Introns can increase gene expression levels using a variety of mechanisms collectively referred to as Intron Mediated Enhancement (IME). IME has been measured in cell culture and plant models by quantifying expression of intronless and intron-bearing reporter genes in vitro . We developed hardware and software to implement microfluidic chip-based gene expression quantification in vivo . We altered position, number and sequence of introns in reporter genes controlled by the hsp-90 promoter. Consistent with plant and mammalian studies, we determined a single, natural or synthetic, 5′-intron is sufficient for the full IME effect conferred by three synthetic introns, while a 3′-intron is not. We found coding sequence can affect IME; the same three synthetic introns that increase mcherry protein concentration by approximately 50%, increase mEGFP by 80%. We determined IME effect size is not greatly affected by the stronger vit-2 promoter. Our microfluidic imaging approach should facilitate screens for factors affecting IME and other intron-dependent processes.
Introns can increase gene expression levels using a variety of mechanisms collectively referred to as Intron Mediated Enhancement (IME). To date, the magnitude of IME has been quantified in human cell culture and plant models by comparing intronless reporter gene expression levels to those of intron-bearing reporter genes in vitro (mRNA, Western Blots, protein activity), using genome editing technologies that lacked full control of locus and copy number. Here, for the first time, we quantified IME in vivo, in terms of protein expression levels, using fluorescent reporter proteins expressed from a single, defined locus in Caenorhabditis elegans. To quantify the magnitude of IME, we developed a microfluidic chip-based workflow to mount and image individual animals, including software for operation and image processing. We used this workflow to systematically test the effects of position, number and sequence of introns on two different proteins, mCherry and mEGFP, driven by two different promoters, vit-2 and hsp-90. We found the three canonical synthetic introns commonly used in C. elegans transgenes increased mCherry protein concentration by approximately 50%. The naturally-occurring introns found in hsp-90 also increased mCherry expression level by about 50%. Furthermore, and consistent with prior results examining mRNA levels, protein activity or phenotypic rescue, we found that a single, natural or synthetic, 5' intron was sufficient for the full IME effect while a 3' intron was not. IME was also affected by protein coding sequence (50% for mCherry and 80% for mEGFP) but not strongly affected by promoter 46% for hsp-90 and 54% for the stronger vit-2. Our results show that IME of protein expression in C. elegans is affected by intron position and contextual coding sequence surrounding the introns, but not greatly by promoter strength. Our combined controlled transgenesis and microfluidic screening approach should facilitate screens for factors affecting IME and other intron-dependent processes. + equal contribution
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.