Summarybackground and method Variation in wing length among natural populations of Aedes (Stegomyia) aegypti (L.) (Diptera: Culicidae) is associated with different vectorial capacities. Geometric morphometrics allowed us to use a more powerful estimator of wing size ('centroid size'), as well as to visualize the variation of wing shape, to describe the effects of density or food variation at larval stage on 20 anatomical landmarks of the wing of A. aegypti.results Almost perfect correlations between (centroid) size and larval density or size and larval food were observed in both sexes: a negative correlation with increasing density and a positive one with increasing amount of food. The allometric component of shape change was always highly significant, with stronger contribution of size to shape under food effects. Within each experiment, either food or density effects, and excluding extreme conditions, allometric trends were similar among replicates and sexes. However, they differed between the two experiments, suggesting different axes of wing growth.conclusion Aedes aegypti size is highly sensible to food concentration or population density acting at larval stages. As larger individuals could be better vectors, and because of the stronger effect of food concentration on size, vector control activities should pay more attention in eliminating containers with rich organic matter. Furthermore, as a simple reduction in larval density could significantly increase the size of the survivors, turning them into potentially better vectors, the control activities should try to obtain a complete elimination of the domestic populations.
Various chiral pyrrolidine tetrasubstituted beta-enamino esters were reduced catalytically or chemically with good to moderate diastereoselectivity owing to a chiral induction originated from (S)-alpha-methylbenzylamine. With endocyclic double bond compounds, the best result was obtained using PtO(2) as hydrogenation catalyst and led to a major syn addition product (e.d. 90%). In the case of exocyclic double bond compounds, hydrogenation over Pd/C gave rise to the higher diastereoselectivity and mainly afforded the unexpected anti addition product (e.d. 84%). The scope of these reductions has been extended to the synthesis of three pyrrolizidine or indolizidine alkaloids: (+)-tashiromine, (+)-laburnine, and (-)-isoretronecanol. Syntheses of these natural products, starting from chiral beta-enamino diesters, were achieved in a short and convenient manner, leading to enantiopure compounds in good overall yields.
The diagnostic dose for temephos susceptibility test was established based on Aedes aegypti, the susceptible Bora (French Polynesia) strain, for practical and routine use. The diagnostic dose was subsequently used to evaluate the susceptibility/resistance status in F1 progenies of field-collected samples from Bangkok and various parts of Thailand. It appeared that Ae. aegypti mosquitoes of one collection site each in Bangkok, Nakhon Sawan (northcentral), and Nakhon Ratchasrima (northeast) were resistant to temephos, with mortality ranging from 50.5 to 71.4%. Moreover, there was a trend of resistance to temephos among Ae. aegypti populations of all studied districts of Nakorn Ratchasima and most areas of Nakhon Sawan, of which those in one area were susceptible. However, various levels of temephos susceptibility were found in Bangkok populations, including resistance and incipient resistance. In Chonburi Province (eastern), all mosquitoes were susceptible to temephos with an indication of tolerance in one sample. Additionally, mosquitoes from Songkhla (south), Chiang Rai (north), Kanchanaburi (west), and Chanthaburi (east) remained susceptible to temephos during the sample collecting period. Bioassay tests on Aedes albopictus populations collected in this study from Nakhon Sawan, Nakorn Ratchasima, Songkhla, and Kanchanaburi revealed high susceptibility to temephos. Although the use of temephos seems to be potentially effective in many areas of the country, a noticeable trend of resistance indicated that alternative vector control methods should be periodically applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.