The European Vegetation Archive (EVA) is a centralized database of European vegetation plots developed by the IAVS Working Group European Vegetation Survey. It has been in development since 2012 and first made available for use in research projects in 2014. It stores copies of national and regional vegetationplot databases on a single software platform. Data storage in EVA does not affect on-going independent development of the contributing databases, which remain the property of the data contributors. EVA uses a prototype of the database management software TURBOVEG 3 developed for joint management of multiple databases that use different species lists. This is facilitated by the SynBioSys Taxon Database, a system of taxon names and concepts used in the individual European databases and their corresponding names on a unified list of European flora. TURBOVEG 3 also includes procedures for handling data requests, selections and provisions according to the approved EVA Data Property and Governance Rules. By 30 June 2015, 61 databases from all European regions have joined EVA, contributing in total 1 027 376 vegetation plots, 82% of them with geographic coordinates, from 57 countries. EVA provides a unique data source for largescale analyses of European vegetation diversity both for fundamental research and nature conservation applications. Updated information on EVA is available online at http://euroveg.org/evadatabase.
Lysenko 91,92 | Armin Macanović 93 | Parastoo Mahdavi 94 | Peter Manning 35 | Corrado Marcenò 13 | Vassiliy Martynenko 95 | Maurizio Mencuccini 96 | Vanessa Minden 97 | Jesper Erenskjold Moeslund 54 | Marco Moretti 98 | Jonas V. Müller 99 | Abstract Aims: Vegetation-plot records provide information on the presence and cover or abundance of plants co-occurring in the same community. Vegetation-plot data are spread across research groups, environmental agencies and biodiversity research centers and, thus, are rarely accessible at continental or global scales. Here we present the sPlot database, which collates vegetation plots worldwide to allow for the exploration of global patterns in taxonomic, functional and phylogenetic diversity at the plant community level.Results: sPlot version 2.1 contains records from 1,121,244 vegetation plots, which comprise 23,586,216 records of plant species and their relative cover or abundance in plots collected worldwide between 1885 and 2015. We complemented the information for each plot by retrieving climate and soil conditions and the biogeographic context (e.g., biomes) from external sources, and by calculating community-weighted means and variances of traits using gap-filled data from the global plant trait database TRY. Moreover, we created a phylogenetic tree for 50,167 out of the 54,519 species identified in the plots. We present the first maps of global patterns of community richness and community-weighted means of key traits. Conclusions: The availability of vegetation plot data in sPlot offers new avenues for vegetation analysis at the global scale. K E Y W O R D S biodiversity, community ecology, ecoinformatics, functional diversity, global scale, macroecology, phylogenetic diversity, plot database, sPlot, taxonomic diversity, vascular plant, vegetation relevé 166 |
Knowledge about Sphagnum-associated microbial communities, their structure and their origin is important to understand and maintain climate-relevant Sphagnum-dominated bog ecosystems. We studied bacterial communities of two cosmopolitan Sphagnum species, which are well adapted to different abiotic parameters (Sphagnum magellanicum, which are strongly acidic and ombrotrophic, and Sphagnum fallax, which are weakly acidic and mesotrophic), in three Alpine bogs in Austria by a multifaceted approach. Great differences between bacterial fingerprints of both Sphagna were found independently from the site. This remarkable specificity was confirmed by a cloning and a deep sequencing approach. Besides the common Alphaproteobacteria, we found a discriminative spectrum of bacteria; although Gammaproteobacteria dominated S. magellanicum, S. fallax was mainly colonised by Verrucomicrobia and Planctomycetes. Using this information for fluorescent in situ hybridisation analyses, corresponding colonisation patterns for Alphaproteobacteria and Planctomycetes were detected. Bacterial colonies were found in high abundances inside the dead big hyalocytes, but they were always connected with the living chlorocytes. Using multivariate statistical analysis, the abiotic factors nutrient richness and pH were identified to modulate the composition of Sphagnum-specific bacterial communities. Interestingly, we found that the immense bacterial diversity was transferred via the sporophyte to the gametophyte, which can explain the high specificity of Sphagnum-associated bacteria over long distances. In contrast to higher plants, which acquire their bacteria mainly from the environment, mosses as the phylogenetically oldest land plants maintain their bacterial diversity within the whole lifecycle.
Endophytes have an intimate and often symbiotic interaction with their hosts. Less is known about the composition and function of endophytes in trees. In order to evaluate our hypothesis that plant genotype and origin have a strong impact on both, endophytes of leaves from 10 Olea europaea L. cultivars from the Mediterranean basin growing at a single agricultural site in Spain and from nine wild olive trees located in natural habitats in Greece, Cyprus, and on Madeira Island were studied. The composition of the bacterial endophytic communities as revealed by 16S rRNA gene amplicon sequencing and the subsequent PCoA analysis showed a strong correlation to the plant genotypes. The bacterial distribution patterns were congruent with the plant origins in “Eastern” and “Western” areas of the Mediterranean basin. Subsequently, the endophytic microbiome of wild olives was shown to be closely related to those of cultivated olives of the corresponding geographic origins. The olive leaf endosphere harbored mostly Proteobacteria, followed by Firmicutes, Actinobacteria, and Bacteroidetes. The detection of a high portion of archaeal taxa belonging to the phyla Thaumarchaeota, Crenarchaeota, and Euryarchaeota in the amplicon libraries was an unexpected discovery, which was confirmed by quantitative real-time PCR revealing an archaeal portion of up to 35.8%. Although the function of these Archaea for their host plant remains speculative, this finding suggests a significant relevance of archaeal endophytes for plant–microbe interactions. In addition, the antagonistic potential of culturable endophytes was determined; all isolates with antagonistic activity against the olive-pathogenic fungus Verticillium dahliae Kleb. belong to Bacillus amyloliquefaciens. In contrast to the specific global structural diversity, BOX-fingerprints of the antagonistic Bacillus isolates were highly similar and independent of the olive genotype from which they were isolated.
regions; 1970-2015 time period), we analysed the species pool and frequency of alien vascular plants with respect to geographic origin and life-forms, and the levels of invasion across the European Nature Information System (EUNIS) woodland habitats. Results:We found a total of 386 alien plant species (comprising 7% of all recorded vascular plants). Aliens originating from outside of and from within Europe were almost equally represented in the species pool (192 vs. 181 species) but relative frequency was skewed towards the former group (77% vs. 22%) due, to some extent, to the frequent occurrence of Impatiens parviflora (21% frequency among alien plants).Phanerophytes were the most species-rich life-form (148 species) and had the highest representation in terms of relative frequency (39%) among aliens in the dataset. Apart from Europe (181 species), North America was the most important source of alien plants (109 species). At the local scale, temperate and boreal softwood riparian woodland (5%) and mire and mountain coniferous woodland (<1%) had the highest and lowest mean relative alien species richness (percentage of alien species per plot), respectively. Main conclusions:Our results indicate that European woodlands are prone to alien plant invasions especially when exposed to disturbance, fragmentation, alien propagule pressure and high soil nutrient levels. Given the persistence of these factors in the landscape, competitive alien plant species with a broad niche, including alien trees and shrubs, are likely to persist and spread further into European woodlands. K E Y W O R D SEUNIS, exotic, forest, invasive plants, life-form, neophyte, non-native, origin, tree | INTRODUCTIONGlobalization has triggered a massive spread of plant species to areas outside their native distribution ranges (van Kleunen et al., 2015).Some alien species persist only temporarily as casuals in the new area, while others can overcome local abiotic and reproductive barriers to establish self-sustaining populations (Richardson et al., 2000). Some naturalized aliens become invasive, that is they can spread in large numbers and across considerable distances (Richardson et al., 2000) or can have detrimental environmental and socio-economic impacts Woodlands cover a third of Europe's terrestrial area (Forest Europe, 2015; note that we use "woodland" as a synonym of "forest" in our article). In the past, they were logged and transformed to cropland andother open landscape types on a massive scale (Behre, 1988). Today, most European woodlands are composed of stands where the mean tree age is only 60 years (Vilén et al., 2012). Woodlands-and stands with old trees in particular-are generally thought to be resistant to alien plant invasions given the specific abiotic conditions in their herb layer, such as a dense canopy cover and a thick litter layer (Rejmánek, 2015). However, an increasing number of studies has questioned this assumption (e.g., Essl, Mang, & Moser, 2012;Kohli, Jose, Pal Singh, & Batish, 2009;Martin, Canham, & Marks, 2009;Re...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.