The design and development of selective ligands for the human OT (oxytocin) and AVP (arginine vasopressin) receptors is a big challenge since the different receptor subtypes and their native peptide ligands display great similarity. Detailed understanding of the mechanism of OT's interaction with its receptor is important and may assist in the ligand- or structure-based design of selective and potent ligands. In the present article, we compared 69 OT- and OT-like receptor sequences with regards to their molecular evolution and diversity, utilized an in silico approach to map the common ligand interaction sites of recently published G-protein-coupled receptor structures to a model of the human OTR (OT receptor) and compared these interacting residues within a selection of different OTR sequences. Our analysis suggests the existence of a binding site for OT peptides within the common transmembrane core region of the receptor, but it appears extremely difficult to identify receptor or ligand residues that could explain the selectivity of OT to its receptors. We remain confident that the presented evolutionary overview and modelling approach will aid interpretation of forthcoming OTR crystal structures.
Background: The A2A receptor is known to accumulate in the endoplasmic reticulum.Results: Mass spectrometry identified molecular chaperones (HSP90 and HSP70) bound to the A2A receptor.Conclusion: Sequential recruitment of chaperones to the cytosolic face of the A2A receptor is consistent with a heat-shock protein relay assisting folding.Significance: The observations are consistent with a chaperone/COPII exchange model, where heat-shock proteins bound to the receptor preclude its premature ER export.
Oxytocin and vasopressin mediate various physiological functions that are important for osmoregulation, reproduction, cardiovascular function, social behavior, memory, and learning through four G protein-coupled receptors that are also implicated in high-profile disorders. Targeting these receptors is challenging because of the difficulty in obtaining ligands that retain selectivity across rodents and humans for translational studies. We identified a selective and more stable oxytocin receptor (OTR) agonist by subtly modifying the pharmacophore framework of human oxytocin and vasopressin. [Se-Se]-oxytocin-OH displayed similar potency to oxytocin but improved selectivity for OTR, an effect that was retained in mice. Centrally infused [Se-Se]-oxytocin-OH potently reversed social fear in mice, confirming that this action was mediated by OTR and not by V1a or V1b vasopressin receptors. In addition, [Se-Se]-oxytocin-OH produced a more regular contraction pattern than did oxytocin in a preclinical labor induction and augmentation model using myometrial strips from cesarean sections. [Se-Se]-oxytocin-OH had no activity in human cardiomyocytes, indicating a potentially improved safety profile and therapeutic window compared to those of clinically used oxytocin. In conclusion, [Se-Se]-oxytocin-OH is a novel probe for validating OTR as a therapeutic target in various biological systems and is a promising new lead for therapeutic development. Our medicinal chemistry approach may also be applicable to other peptidergic signaling systems with similar selectivity issues.
Activation of Gs-coupled receptors enhances engraftment of hematopoietic stem and progenitor cells (HSPCs). We tested the hypothesis that treprostinil, a prostacyclin analog approved for the treatment of pulmonary hypertension, can be repurposed to improve hematopoietic stem cell transplantation. Murine and human HSPCs were isolated from bone marrow and umbilical cord blood, respectively. Prostanoid receptor agonists and the combination thereof with forskolin were tested for their capacity to stimulate [3H]cAMP accumulation in HSPCs. Three independent approaches were employed to verify the ability of agonist-activated HSPCs to reconstitute the bone marrow in lethally irradiated recipient mice. The underlying mechanism was explored in cellular migration assays and by blocking C-X-C motif chemokine receptor 4 (CXCR4). Among several prostanoid agonists tested in combination with forskolin, treprostinil was most efficacious in raising intracellular cAMP levels in murine and human HPSCs. Injection of murine and human HSPCs, which had been pretreated with treprostinil and forskolin, enhanced survival of lethally irradiated recipient mice. Survival was further improved if recipient mice were subcutaneously administered treprostinil (0.15 mg kg−1 8 h−1) for 10 days. This regimen also reduced the number of HSPCs required to rescue lethally irradiated mice. Enhanced survival of recipient mice was causally related to treprostinil-enhanced CXCR4-dependent migration of HSPCs. Treprostinil stimulates the engraftment of human and murine hematopoietic stem cells without impairing their capacity for self-renewal. The investigated dose range corresponds to the dose approved for human use. Hence, these findings may be readily translated into a clinical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.