Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explain one-fifth of heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ~2,000, ~3,700 and ~9,500 SNPs explained ~21%, ~24% and ~29% of phenotypic variance. Furthermore, all common variants together captured the majority (60%) of heritability. The 697 variants clustered in 423 loci enriched for genes, pathways, and tissue-types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/beta-catenin, and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, we conducted genome-wide association meta-analyses of waist and hip circumference-related traits in up to 224,459 individuals. We identified 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (WHRadjBMI) and an additional 19 loci newly associated with related waist and hip circumference measures (P<5×10−8). Twenty of the 49 WHRadjBMI loci showed significant sexual dimorphism, 19 of which displayed a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation, and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
It has been suggested that the metabolic side effects of antihypertensive drugs are responsible for their failure to reduce cardiovascular morbidity in patients with hypertension. Therefore, in 50 patients with essential hypertension, we performed a randomized, double-blind, crossover study comparing the effects of carbohydrate and lipid metabolism of captopril (mean [+/- SD] dose, 81 +/- 24 mg per day) and hydrochlorothiazide (40 +/- 12 mg per day) over two four-month treatment periods. Captopril increased the insulin-mediated disposal of glucose, as compared with placebo, from 5.7 +/- 2.4 to 6.3 +/- 2.5 mg per kilogram of body weight per minute (P less than 0.05), whereas hydrochlorothiazide caused a decrease from 6.4 +/- 2.0 to 5.7 +/- 1.9 (P less than 0.01). Captopril had no effect on the basal insulin concentration, but it decreased the late (30- to 90-minute) insulin response to glucose and increased the early (2- to 6-minute) insulin peak. Hydrochlorothiazide increased the basal insulin concentration and the late insulin response to glucose. These findings may be explained by an increase in insulin sensitivity with captopril and a decrease with hydrochlorothiazide. Little or no change was seen in serum lipid or lipoprotein levels during treatment with captopril, whereas hydrochlorothiazide caused significant increases in serum total (5 percent) and low-density lipoprotein (6 percent) cholesterol levels and total (15 percent) and very-low-density lipoprotein (25 percent) triglyceride levels, as compared with placebo (P less than 0.01 for all comparisons). We conclude that hydrochlorothiazide for the treatment of essential hypertension has adverse effects on glucose and lipid metabolism. It is possible, but not proved in this study, that these changes may contribute to the risk for diabetes mellitus and coronary heart disease. In contrast, captopril appears to have beneficial or no effects on glucose and lipid metabolism.
The formation of multicellular microbial communities, called biofilms, starts from the adhesion of a few planktonic cells to the surface. The transition from a free-living planktonic lifestyle to a sessile, attached state is a multifactorial process that is determined by biological, chemical and physical properties of the environment, the surface and the bacterial cell. The initial weak, reversible interactions between a bacterium and a surface strengthen to yield irreversible adhesion. In this Review, we summarize our understanding of the mechanisms governing bacterial adhesion at the single-cell level, including the physical forces experienced by a cell before reaching the surface, the first contact with a surface and the transition from reversible to permanent adhesion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.