Immunosuppressant drugs such as cyclosporin have allowed widespread organ transplantation, but their utility remains limited by toxicities, and they are ineffective in chronic management of autoimmune diseases such as multiple sclerosis. In contrast, the immune modulating drug FTY720 is efficacious in a variety of transplant and autoimmune models without inducing a generalized immunosuppressed state and is effective in human kidney transplantation. FTY720 elicits a lymphopenia resulting from a reversible redistribution of lymphocytes from circulation to secondary lymphoid tissues by unknown mechanisms. Using FTY720 and several analogs, we show now that FTY720 is phosphorylated by sphingosine kinase; the phosphorylated compound is a potent agonist at four sphingosine 1-phosphate receptors and represents the therapeutic principle in a rodent model of multiple sclerosis. Our results suggest that FTY720, after phosphorylation, acts through sphingosine 1-phosphate signaling pathways to modulate chemotactic responses and lymphocyte trafficking.FTY720 is derived from ISP-1 (myriocin), a fungal metabolite that is an eternal youth nostrum in traditional Chinese herbal medicine (1). The compound (2-amino-2-[2-(4-octylphenyl)ethyl]propane-1,3-diol) is a novel, high potency immune modulating agent that is remarkably effective in a variety of autoimmune and transplant models including islet transplantation (2) and has recently proven to be effective in renal transplantation in man (3). Unlike the currently used immunosuppressive agents (e.g. the calcineurin inhibitors cyclosporin and tacrolimus), FTY720 does not inhibit T cell activation and proliferation and in rodent models does not impair immunity to systemic viral infection (4). If confirmed in man, the latter property provides a striking advantage over current immunosuppressive therapies. FTY720 apparently sequesters lymphocytes from circulation to secondary lymph tissue compartments (5) with concomitant reduction of specific effector T cells recirculating from the lymph nodes to inflamed peripheral tissues (4) and graft sites (6). FTY720 does not act via the lymphocytehoming chemokine receptor CCR-7 because FTY720 is active both in CCR-7-deficient mice and plt (paucity of lymph node T cells) mice, which lack CCR-7 ligands (CCL-19 and CCL-21) (7).FTY720-induced lymphocyte homing is sensitive to suppression by pertussis toxin (6 -8), which suggests that the molecular target of the drug is a G protein-coupled receptor (GPCR) 1 interacting with heterotrimeric G proteins of the ␣ i/o type. The affected GPCR(s) is on the lymphocyte since fluorescently labeled lymphocytes treated with pertussis toxin ex vivo and transferred to mice are not depleted by FTY720 in vivo (8). The structural similarity of FTY720 and sphingosine has prompted speculation that the drug might act via the sphingosine 1-phosphate (S1P) receptor S1P 4 (formerly 2 that is known to be expressed by lymphocytes (9). S1P is a pleiotropic lysophospholipid mediator; the prominent cellular responses to applied S...
For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ~1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.
Selection of T-cell vaccine antigens for chronic persistent viral infections has been largely empirical. To define the relationship, at the population level, between the specificity of the cellular immune response and viral control for a relevant human pathogen, we performed a comprehensive analysis of the 160 dominant CD8(+) T-cell responses in 578 untreated HIV-infected individuals from KwaZulu-Natal, South Africa. Of the HIV proteins targeted, only Gag-specific responses were associated with lowering viremia. Env-specific and Accessory/Regulatory protein-specific responses were associated with higher viremia. Increasing breadth of Gag-specific responses was associated with decreasing viremia and increasing Env breadth with increasing viremia. Association of the specific CD8(+) T-cell response with low viremia was independent of HLA type and unrelated to epitope sequence conservation. These population-based data, suggesting the existence of both effective immune responses and responses lacking demonstrable biological impact in chronic HIV infection, are of relevance to HIV vaccine design and evaluation.
Within-patient HIV evolution reflects the strong selection pressure driving viral escape from cytotoxic T-lymphocyte (CTL) recognition. Whether this intrapatient accumulation of escape mutations translates into HIV evolution at the population level has not been evaluated. We studied over 300 patients drawn from the B- and C-clade epidemics, focusing on human leukocyte antigen (HLA) alleles HLA-B57 and HLA-B5801, which are associated with long-term HIV control and are therefore likely to exert strong selection pressure on the virus. The CTL response dominating acute infection in HLA-B57/5801-positive subjects drove positive selection of an escape mutation that reverted to wild-type after transmission to HLA-B57/5801-negative individuals. A second escape mutation within the epitope, by contrast, was maintained after transmission. These data show that the process of accumulation of escape mutations within HIV is not inevitable. Complex epitope- and residue-specific selection forces, including CTL-mediated positive selection pressure and virus-mediated purifying selection, operate in tandem to shape HIV evolution at the population level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.