The application of conventional cooling lubricants for the tribological conditioning of machining processes involves high additional costs and health risks. The application of a cryogenic carbon dioxide (CO2) snow cooling strategy is an economical and environmentally sound alternative for oily cooling emulsions since it has a high cooling effect as well as a residue-free sublimation. This article introduces a laser additive manufactured tool holder with an integrated dual nozzle which enables CO2-snow jet application. Initially this work focuses on the characterization and the selection of a suitable nozzle geometry. The modular tool body features an adapted channel structure for process-reliable and targeted CO2-snow cooling for turning processes. This enables the simultaneous cooling of the rake and flank face with CO2-snow, as well as the application of cryogenic multi-component cooling of the rake face. In the context of this study, the focus lies on the technological evaluation of three different supply strategies during the continuous turning of compacted graphite iron CGI-450 at increased cutting speed. It was established that an efficient rake face cooling is indispensable to achieve a low thermal tool load, and thus lower crater wear behavior. Therefore, this study contributes to an improvement in cryogenic machining processes regarding the design of additively manufactured tool bodies for process-reliable CO2-snow cooling, as well as for the selection of supply strategies to minimize the thermomechanical tool load.
Additive Fertigungsverfahren gestatten die Herstellung innovativer Werkzeugsysteme mit erhöhter Funktionsintegration. Die vorliegende Arbeit liefert wichtige Erkenntnisse in Bezug auf additiv gefertigte Drehklemmhalter. Zum einen wird der Einfluss der Wärmebehandlung auf das Werkstoffgefüge und schlussendlich auf die Schwingfestigkeitseigenschaften untersucht. Zum anderen wird der Einfluss additiv hergestellter Zweistoffdüsen auf das resultierende Freistrahlverhalten experimentell ermittelt. Additive manufacturing processes allow producing innovative tool systems associated with increased functional integration. This work provides important insights on additively manufactured turning tool holders. Firstly, it investigates how heat treatment affects both material structure and fatigue properties. Secondly, it determines experimentally how additively produced two-fluid nozzles influence the resulting open jet formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.