Electronic textiles (e-textiles) have become more and more important in daily life and attracted increased attention of the scientific community over the last decade. This interdisciplinary field of interest ranges from material science, over chemistry, physics, electrical engineering, information technology to textile design. Numerous applications can already be found in sports, safety, healthcare, etc. Throughout the life of service, e-textiles undergo several exposures, e.g., mechanical stress, chemical corrosion, etc., that cause aging and functional losses in the materials. The review provides a broad and critical overview on the functional ageing of electronic textiles on different levels from fibres to fabrics. The main objective is to review possible aging mechanisms and elaborate the effect of aging on (electrical) performances of e-textiles. The review also provides an overview on different laboratory methods for the investigation on accelerated functional ageing. Finally, we try to build a model of cumulative fatigue damage theory for modelling the change of e-textile properties in their lifetime.
Conductive textiles play an important role in recent electronics development; however, one of the major challenges remains their machine-washing durability. For the investigation of the basic wash ageing mechanisms, we used copper-plated polyamide 66 and cellulose fabrics and developed a wet and dry operable flex tester with online resistance recording. The evaluation was supported by abrasion tests, cyclic elongation tests and tribological investigation of dry and wet textile–textile friction. It was found that the contribution of mechanical and chemical ageing to wash ageing strongly depends on the substrate material. A bad adhesion of copper on polyamide 66 leads to early fatigue while better stability of the copper on cellulose leads to a stronger resistance against ageing. For both substrates, the delamination of the copper layer was the root cause of the fatigue, which is facilitated by the washing solution. Finally, a cumulative fatigue model was developed and the determination of the end of lifetime by the intended use is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.