cDNA clones encoding a human blood group Rh polypeptide were isolated from a human bone marrow cDNA library by using a polymerase chain reaction-amplified DNA fragment encoding the known common N-terminal region of the Rh proteins. The entire primary structure of the Rh polypeptide has been deduced from the nucleotide sequence of a 1384-base-pair-long cDNA clone. Translation of the open reading frame indicates that the Rh protein is composed of 417 amino acids, including the initiator methionine, which is removed in the mature protein, lacks a cleavable N-terminal sequence, and has no consensus site for potential Nglycosylation. The predicted molecular mass of the protein is 45,500, while that estimated for the Rh protein analyzed in NaDodSO4/polyacrylamide gels is in the range of 30,000-32,000. These findings suggest either that the hydrophobic Rh protein behaves abnormally on NaDodSO4 gels or that the Rh mRNA may encode a precursor protein, which is further matured by a proteolytic cleavage of the C-terminal region of the polypeptide. Hydropathy analysis and secondary structure predictions suggest the presence of 13 membrane-spanning domains, indicating that the Rh polypeptide is highly hydrophobic and deeply buried within the phospholipid bilayer. In RNA blot-hybridization (Northern) analysis, the Rh cDNA probe detects a major 1.7-kilobase and a minor 3.5-kilobase mRNA species in adult erythroblasts, fetal liver, and erythroid (K562, HEL) and megakaryocytic (MEG01) leukemic cell lines, but not in adult liver and kidney tissues or lymphoid (Jurkat) and promyelocytic (HL60) cell lines. These results suggest that the expression of the Rh gene(s) might be restricted to tissues or cell lines expressing erythroid characters.
Vascular endothelial growth factor (VEGF) promotes neovascularization, microvascular permeability, and endothelial proliferation. We described previously VEGF mRNA and protein induction by estradiol (E2) in human endometrial fibroblasts. We report here E2 induction of VEGF expression in human venous muscle cells [smooth muscle cells (SMC) from human saphenous veins; HSVSMC] expressing both ER-alpha and ER-beta estrogen receptors. E2 at 10(-9) to 10(-8) M increases VEGF mRNA in HSVSMC in a time-dependent manner (3-fold at 24 h), as analyzed by semiquantitative RT-PCR. This level of induction is comparable with E2 endometrial induction of VEGF mRNA. Tamoxifen and hypoxia also increase HSVSMC VEGF mRNA expression over control values. Immunocytochemistry of saphenous veins and isolated SMC confirms translation of VEGF mRNA into protein. Immunoblot analysis of HSVSMC-conditioned medium detects three bands of 18, 23, and 28 kDa, corresponding to VEGF isoforms of 121, 165, and 189 amino acids. Radioreceptor assay of the conditioned medium produced by E2-stimulated HSVSMC reveals an increased VEGF secretion. Our data indicate that VEGF is E2, tamoxifen, and hypoxia inducible in cultured HSVSMC and E2 inducible in aortic SMC, suggesting E2 modulation of VEGF effects in angiogenesis, vascular permeability, and integrity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.