In this study, self-optimization of a grinding machine is demonstrated with respect to production costs, while fulfilling quality and safety constraints. The quality requirements of the final workpiece are defined with respect to grinding burn and surface roughness, and the safety constrains are defined with respect to the temperature at the grinding surface. Grinding temperature is measured at the contact zone between grinding wheel and workpiece using a pyrometer and an optical fiber, which is embedded inside the rotating grinding wheel. Constrained Bayesian optimization combined with Gaussian process models is applied to determine the optimal feed rate and cutting speed of a cup wheel grinding machine manufacturing tungsten carbide cutting inserts. The approach results in the determination of optimal parameters for unknown workpiece and tool combinations after only a few grinding trials. It also incorporates the uncertainty of the constraints in the prediction of optimal parameters by using stochastic process models 1 .
Today, an operator performs experiments to adaptively select grinding process parameters using observations, expert knowledge, and rules of thumb. Self-optimizing grinding machines cannot use operator observations and must therefore extract enough information out of the grinding process. In this study, a holistic sensor setup as foundation for self-optimizing machines are presented exemplarily for cup wheel grinding machines. In-process detection of grinding burn, based on temperature and gas measurements, is tested and compared. Afterwards, the influence of input variables such as feed rate and cutting speed on grinding cost, grinding burn, and surface roughness are investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.