The aim of this work is to present the development of a hybrid Brain-Computer Interface (hBCI) which combines existing input devices with a BCI. Thereby, the BCI should be available if the user wishes to extend the types of inputs available to an assistive technology system, but the user can also choose not to use the BCI at all; the BCI is active in the background. The hBCI might decide on the one hand which input channel(s) offer the most reliable signal(s) and switch between input channels to improve information transfer rate, usability, or other factors, or on the other hand fuse various input channels. One major goal therefore is to bring the BCI technology to a level where it can be used in a maximum number of scenarios in a simple way. To achieve this, it is of great importance that the hBCI is able to operate reliably for long periods, recognizing and adapting to changes as it does so. This goal is only possible if many different subsystems in the hBCI can work together. Since one research institute alone cannot provide such different functionality, collaboration between institutes is necessary. To allow for such a collaboration, a new concept and common software framework is introduced. It consists of four interfaces connecting the classical BCI modules: signal acquisition, preprocessing, feature extraction, classification, and the application. But it provides also the concept of fusion and shared control. In a proof of concept, the functionality of the proposed system was demonstrated.
Steady-state somatosensory evoked potentials (SSSEPs) have been elicited applying vibro-tactile stimulation to all fingertips of the right hand. Nine healthy subjects participated in two sessions within this study. All fingers were stimulated 40 times with a 200-Hz carrier frequency modulated with a rectangular signal. The frequencies of the rectangular signal ranged between 17 and 35 Hz in 2 Hz steps. Relative band power tuning curves were calculated, introducing two different methods. Person-specific resonance-like frequencies were selected based on the data from the first session. The selected resonance-like frequencies were compared with the second session using an ANOVA for repeated measures to investigate the stability of SSSEPs over time. To determine, if SSSEPs can be classified with a classifier based on unseen data, an LDA classifier was trained with data from the first and applied to data from the second session. Person-specific resonance-like frequencies within a range from 19 to 29 Hz were found. The relative band power of the resonance-like frequencies did not differ significantly between the two sessions. Significant differences were found for the two methods and the used channels. SSSEPs were classified with a hit rate from 51 to 96 %.
In earlier literature, so-called twitches were used to support a user in a steady-state somatosensory evoked potential (SSSEP) based brain–computer interface (BCI) to focus attention on the requested targets. Within this work, we investigate the impact of these transient target stimuli on SSSEPs in a real-life BCI setup. A hybrid BCI was designed which combines SSSEPs and P300 potentials evoked by twitches randomly embedded into the streams of tactile stimuli. The EEG of fourteen healthy subjects was recorded, while their left and right index fingers were simultaneously stimulated using frequencies selected in a screening procedure. The subjects were randomly instructed by a cue on a screen to focus attention on one or none of the fingers. Feature for SSSEPs and P300 potentials were extracted and classified using separately trained multi-class shrinkage LDA classifiers. Three-class classification accuracies significantly better than random could be reached by nine subjects using SSSEP features and by 12 subjects using P300 features respectively. The average classification accuracies were 48.6% using SSSEP and 50.7% using P300 features. By means of a Monte Carlo permutation test it could be shown that twitches have an attenuation effect on the SSSEP. Significant SSSEP blocking effects time-locked to twitch positions were found in seven subjects. Our findings suggest that the attempt to combine different types of stimulation signals like repetitive signals and twitches has a mutual influence on each other, which may be the main reason for the rather moderate BCI performance. This influence is originated at the level of stimulus generation but becomes apparent as physiological effect in the SSSEP. When designing a hybrid BCI based on SSSEPs and P300 potentials, one has to find an optimal tradeoff depending on the overall design goals or individual subjects' performance. Our results give therefore some new insights that may be useful for the successful design of hybrid BCIs.
It could be shown that utilizing SSSEP and tERP for hBCIs increases the classification accuracy and also that tERP and SSSEP are not classifying control- and non-control states with the same level of accuracy.
Steady-state somatosensory evoked potentials (SSSEPs) have been elicited using vibro-tactile stimulation on two fingers of the right hand. Fourteen healthy subjects participated in this study. A screening session, stimulating each participant's thumb, was conducted to determine individual optimal resonance-like frequencies. After this screening session, two stimulation frequencies per subject were selected. Stimulation was then applied simultaneously on the participant's thumbs and middle finger. It was investigated whether it is possible to classify SSSEP changes based on an attention modulation task to determine possible BCI applications. A cue indicated the participants to shift their attention to either the thumb or the middle finger. Offline classification with a lock-in analyzer system (LAS) and a linear discriminant analysis (LDA) classifier was performed. One bipolar channel and no further optimization methods were used. All participants except one reached classification results above chance level classifying a reference period without focused attention against focused attention either to the thumb or the middle finger. Only two subjects reached accuracies above chance, classifying focused attention to the thumb vs. attention to the middle finger.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.