Purpose:To evaluate the marginal fit of CAD/CAM all ceramic crowns made from lithium disilicate and zirconia using two different fabrication protocols (model and model-less). Materials and Methods: Forty anterior all ceramic restorations (20 lithium disilicate, 20 zirconia) were fabricated from digital impressions using a CEREC Bluecam scanner. Two different digital workflows were used: a fully digital model-less approach and a printed model digital approach. The crowns were cemented on the respective prepared typodont teeth and marginal gap was evaluated using Micro-CT. Each specimen was analyzed in sagittal and trans-axial orientations, allowing evaluation of the marginal fit (vertical and horizontal) on each surface. Logarithmic transformation was used with a significance of 0.05. After that a reliability analysis was performed by re-measuring four randomized selected images for each specimen and performing intraclass correlations to determine any systematic bias in the measurements. Results: Vertical measurements in the lingual, distal and mesial views had an estimated marginal gap ranging from 101.9 to 133.9 µm for lithium disilicate crowns and 126.4 to 165.4 µm for zirconia. No significant differences were found between model and model-less techniques. Conclusions: Both workflows are valid protocols for the fabrication of monolithic ceramic restorations. The use of a printed model did not improve the marginal fit of lithium disilicate or zirconia crowns. Both materials are also clinically acceptable, no matter which workflow was used to obtain the restoration.
Porous tantalum trabecular metal (PTTM) has long been used in orthopedics to enhance neovascularization, wound healing, and osteogenesis; recently, it has been incorporated into titanium alloy dental implants. However, little is known about the biological responses to PTTM in the human oral cavity. We have hypothesized that, compared with conventional titanium alloy, PTTM has a greater expression of genes specific to neovascularization, wound healing, and osteogenesis during the initial healing period. Twelve subjects requiring at least 4 implants in the mandible were enrolled. Four 3 × 5mm devices, including 2 titanium alloy tapered screws and 2 PTTM cylinders, were placed in the edentulous mandibular areas using a split-mouth design. One device in each group was trephined for analysis at 2 and 4 weeks after placement. RNA microarray analysis and ingenuity pathway analysis were used to analyze osteogenesis gene expression and relevant signaling pathways. Compared to titanium alloy, PTTM samples exhibited significantly higher expressions of genes specific to cell neovascularization, wound healing, and osteogenesis. Several genes—including bone morphogenic proteins, collagens, and growth factors—were upregulated in the PTTM group compared to the titanium alloy control. PTTM materials may enhance the initial healing of dental implants by modifying gene expression profiles.
This study compared the accuracy of implant scan bodies printed using stereolithography (SLA) and digital light processing (DLP) technologies to the control (manufacturer’s scan body) Scan bodies were printed using SLA (n = 10) and DLP (n = 10) methods. Ten manufacturer’s scan bodies were used as control. The scan body was placed onto a simulated 3D printed cast with a single implant placed. An implant fixture mount was used as standard. The implant positions were scanned using a laboratory scanner with the fixture mounts, manufacturer’s scan bodies, and the printed scan bodies. The scans of each scan body was then superimposed onto the referenced fixture mount. The 3D angulation and linear deviations were measured. The angulation and linear deviations were 1.24±0.22° and 0.20±0.05 mm; 2.63±0.82° and 0.34±0.11 mm; 1.79±0.19° and 0.32±0.03 mm; for the control, SLA, and DLP, respectively. There were statistical differences (ANOVA) among the three groups in the angular (p<0.01) or linear deviations (p<0.01). Box plotting, 95% confidence interval and F-test suggested the higher variations of precision in the SLA group compared to DLP and control groups. Scan bodies printed in-office have lower accuracy compared to the manufacturer’s scan bodies. The current technology for 3D printing of implant scan bodies needs trueness and precision improvements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.