For a long time, the number of available bead foam variants limited to standard polymers which restricted their functionality mainly to packaging, thermal insulation (e.g. in construction) and shock absorption (e.g. in transportation). In particular, standard polymers such as expanded polystyrene, expanded polyethylene and expanded polypropylene were used for components requiring good insulating properties and high energy absorption at low cost. Mainly since the last two decades, new polymer variants have found their way into the world of bead foams and are currently adding further functionalities, such as sustainability, flame retardancy, increased thermal stability and enhanced mechanical performance (e.g. improvements in energy absorption and impact resistance). Versatile fields of application open up, revolutionizing both industry and design sectors. This review article emphasizes the special development progress of new bead foam variants and their processing technologies. Upcoming opportunities of digital methods for modelling and simulation are highlighted.
In this comprehensive study, the influence of (i) material specific properties (e.g., molecular weight, zero shear viscosity, D-content) and (ii) process parameters (e.g., saturation temperature, -time, -pressure, and pressure drop rate) on the expansion behavior during the autoclave foaming process were investigated on linear Polylactide (PLA) grades, to identify and evaluate the foam relevant parameters. Its poor rheological behavior is often stated as a drawback of PLA, that limits its foamability. Therefore, nine PLA grades with different melt strength and zero shear viscosity were systematically chosen to identify whether these are the main factors governing the foam expansion and whether there is a critical value for these rheological parameters to be exceeded, to achieve low density foams with fine cells. With pressure drop induced batch foaming experiments, it could be shown that all of the investigated PLA grades could be foamed without the often used chemical modifications, although with different degrees of expansion. Interestingly, PLAs foaming behavior is rather complex and can be influenced by many other factors due to its special nature. A low molecular weight combined with a high ability to crystallize only lead to intermediate density reduction. In contrast, a higher molecular weight (i.e., increased zero shear viscosity) leads to significant increased expandability independent from the D-content. However, the D-content plays a crucial role in terms of foaming temperature and crystallization. Furthermore, the applied process parameters govern foam expansion, cell size and crystallization.
Polylactide (PLA) is one of the most important bioplastics worldwide and thus represents a good potential substitute for bead foams made of the fossil-based Polystyrene (PS). However, foaming of PLA comes with a few challenges. One disadvantage of commercially available PLA is its low melt strength and elongation properties, which play an important role in foaming. As a polyester, PLA is also very sensitive to thermal and hydrolytic degradation. Possibilities to overcome these disadvantages can be found in literature, but improving the properties for foaming of PLA as well as the degradation behavior during foaming have not been investigated yet. In this study, reactive extrusion on a twin-screw extruder is used to modify PLA in order to increase the melt strength and to protect it against thermal degradation and hydrolysis. PLA foams are produced in an already known process from the literature and the influence of the modifiers on the properties is estimated. The results show that it is possible to enhance the foaming properties of PLA and to protect it against hydrolysis at the same time.
Expanded polymeric beads offer the advantage of being able to produce parts with complex geometries through a consolidation process. However, established polymeric beads are made of thermoplastics, deform and melt beyond their temperature services. In this manuscript, a new technique is proposed to fabricate expandable epoxy beads (EEBs), then expand and fuse them to produce epoxy particle foams (EPFs). This technique is called solid-state carbamate foaming technique. For production of EEBs, a mixture of epoxy, carbamate and hardener is prepared and poured into a 10 mL syringe. The mixture is manually extruded into 60 °C water to obtain a cylindric shape. The extrudate is then further cured to obtain an epoxy oligomer behaving rheological tan delta 3 and 2 at 60 °C. The extrudate is cut into pellets to obtain EEBs. The EEBs are then loaded into an aluminum mold and placed in an oven at 160 °C to expand, fuse to obtain EPFs of 212 kg/m3 and 258 kg/m3. The obtained EPFs provide a Tg of 150–154 °C. The fusion boundaries in EPFs are well formed. Thus, the produced EPFs exhibit a compressive modulus of 50–70 MPa, with a torsion storage modulus at 30 °C of 34–56 MPa.
Tailoring the properties of polylactic acid (PLA) by blending with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a practical methodology to improve the foaming behavior of PLA. PHBV is biodegradable, nontoxic, biocompatible, and made naturally by bacteria. This study investigates the influence of PLA/PHBV blends on the sorption behavior, crystallization behavior, dynamic mechanical properties, and autoclave foaming. It was shown by atomic force microscopyinfrared (AFM-IR) and dynamic mechanical thermal analysis (DMTA) measurements that PHBV and PLA are immiscible. The results from differential scanning calorimetry (DSC), DMTA, and AFM-IR have been correlated to the foaming behavior of PLA at different PHBV contents (10−40%). With increasing PHBV content in the blend, the foam density slightly increased and smaller cell size and an increased foam cell nucleation rate were found. Additionally, the foaming behavior was correlated with thermograms of the foamed samples. Finally, the study showed that PHBV can improve the foam morphology of PLA-based foams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.