Preferential outgrowth of the bud cells forms the basis of branching morphogenesis. Here, we show that lacrimal gland development requires specific modification of heparan sulfates by Ndst genes at the tip of the lacrimal gland bud. Systemic and conditional knockout experiments demonstrate the tissue specific requirement of Ndst1 and Ndst2 in the lacrimal gland epithelial, but not mesenchymal, cells, and the functional importance of Ndst1 in Fgf10-Fgfr2b, but not of Fgf1-Fgfr2b, complex formation. Consistent with this, Fgf10-induced ectopic lacrimal gland budding in explant cultures is dependent upon Ndst gene dose, and epithelial deletion of Fgfr2 abolishes lacrimal gland budding, its specific modification of heparan sulfate and its phosphorylation of Shp2 (Ptpn11 - Mouse Genome Informatics). Finally, we show that genetic ablation of Ndst1, Fgfr2 or Shp2 disrupts ERK signaling in lacrimal gland budding. Given the evolutionarily conserved roles of these genes, the localized activation of the Ndst-Fgfr-Shp2 genetic cascade is probably a general regulatory mechanism of FGF signaling in branching morphogenesis.
Heparan sulfate, an extensively sulfated glycosaminoglycan abundant on cell surface proteoglycans, regulates intercellular signaling through its binding to various growth factors and receptors. In the lacrimal gland, branching morphogenesis depends on the interaction of heparan sulfate with Fgf10-Fgfr2b. To address if lacrimal gland development and FGF signaling depends on 2-O-sulfation of uronic acids and 6-O-sulfation of glucosamine residues, we genetically ablated heparan sulfate 2-O and 6-O sulfotransferases (Hs2st, Hs6st1, and Hs6st2) in developing lacrimal gland. Using a panel of phage display antibodies, we confirmed that these mutations disrupted 2-O and/or 6-O but not N-sulfation of heparan sulfate. The Hs6st mutants exhibited significant lacrimal gland hypoplasia and a strong genetic interaction with Fgf10, demonstrating the importance of heparan sulfate 6-O sulfation in lacrimal gland FGF signaling. Altering Hs2st caused a much less severe phenotype, but the Hs2st;Hs6st double mutants completely abolished lacrimal gland development, suggesting that both 2-O and 6-O sulfation of heparan sulfate contribute to FGF signaling. Combined Hs2st;Hs6st deficiency synergistically disrupted the formation of Fgf10-Fgfr2b-heparan sulfate complex on the cell surface and prevented lacrimal gland induction by Fgf10 in explant cultures. Importantly, the Hs2st;Hs6st double mutants abrogated FGF downstream ERK signaling. Therefore, Fgf10-Fgfr2b signaling during lacrimal gland development is sensitive to the content or arrangement of O-sulfate groups in heparan sulfate. To our knowledge, this is the first study to show that simultaneous deletion of Hs2st and Hs6st exhibits profound FGF signaling defects in mammalian development.Heparan sulfate is a cell-surface glycosaminoglycan playing important roles in the transport and signaling of multiple growth factors, including Hedgehog, Wnt, bone morphogenic protein (BMP), and fibroblast growth factor (FGF) (1-3). Heparan sulfate is first synthesized from the activated monosaccharides, UDP-glucuronic acid and UDP-N-acetylglucosamine, by an Ext copolymerase complex to form a copolymer of glucuronic acid and N-acetylglucosamine. Polymerization is followed by N-deacetylation/N-sulfation of subsets of N-acetylglucosamine residues by N-deacetylase-N-sulfotransferase (Ndst) 2 enzymes (4). Because of the incomplete processing by the Ndst enzymes, the polysaccharide backbone is divided into stretches of variable length of N-sulfated disaccharides (NS domains) and N-acetylated disaccharides (NA domains). A portion of the D-glucuronic acid residues in the NS domains is next converted by glucuronyl C5-epimerase (Hsepi) into l-iduronic acids. A 2-O-sulfotransferase (Hs2st) transfers a sulfate group to the C-2 carbon of the iduronic acids and less frequently to glucuronic acid. Finally, 6-O-sulfotransferases (Hs6st) and more rarely 3-O-sulfotransferases (Hs3st) add sulfate groups to the C-6 and C-3 carbon of the glucosamine residues, respectively. These reactions do not go to completion, lea...
SUMMARYGlycosaminoglycans (GAGs) play a central role in embryonic development by regulating the movement and signaling of morphogens. We have previously demonstrated that GAGs are the co-receptors for Fgf10 signaling in the lacrimal gland epithelium, but their function in the Fgf10-producing periocular mesenchyme is still poorly understood. In this study, we have generated a mesenchymal ablation of UDP-glucose dehydrogenase (Ugdh), an essential biosynthetic enzyme for GAGs. Although Fgf10 RNA is expressed normally in the periocular mesenchyme, Ugdh mutation leads to excessive dispersion of Fgf10 protein, which fails to elicit an FGF signaling response or budding morphogenesis in the presumptive lacrimal gland epithelium. This is supported by genetic rescue experiments in which the Ugdh lacrimal gland defect is ameliorated by constitutive Ras activation in the epithelium but not in the mesenchyme. We further show that lacrimal gland development requires the mesenchymal expression of the heparan sulfate Nsulfation genes Ndst1 and Ndst2 but not the 6-O and 2-O-sulfation genes Hs6st1, Hs6st2 and Hs2st. Taken together, these results demonstrate that mesenchymal GAG controls lacrimal gland induction by restricting the diffusion of Fgf10.
SUMMARYShp2/Ptpn11 tyrosine phosphatase is a general regulator of the RTK pathways. By genetic ablation, we demonstrate that Shp2 is required for lacrimal gland budding, lens cell proliferation, survival and differentiation. Shp2 deletion disrupted ERK signaling and cell cycle regulation, which could be partially compensated by activated Kras signaling, confirming that Ras signaling was the main downstream target of Shp2 in lens and lacrimal gland development. We also showed that Sprouty2, a general suppressor of Ras signaling, was regulated by Shp2 positively at the transcriptional level and negatively at the post-translational level. Only in the absence of Sprouty2 could activated Kras signaling robustly rescue the lens proliferation and lacrimal-gland-budding defects in the Shp2 mutants. We propose that the dynamic regulation of Sprouty by Shp2 might be important not only for modulating Ras signaling in lens and lacrimal gland development, but also for RTK signaling in general.
Pax6 is an essential transcription factor for lens, lacrimal gland and pancreas development. Previous transgenic analyses have identified several Pax6 regulatory elements, but their functional significance and binding factors remain largely unknown. In this study, we generated two genomic truncations to delete three elements that were previously shown to bind to the Meis/Prep family homeoproteins. One 3.1 kb deletion (Pax6 ΔDP/ΔDP) removed two putative pancreatic enhancers and a previously identified ectodermal enhancer, while a 450 bp sub-deletion (Pax6ΔPE/ΔPE) eliminated only the promoter-proximal pancreatic enhancer. Immunohistochemistry and quantitative RT-PCR showed that the Pax6ΔPE/ΔPE pancreata had a significant decrease in Pax6, glucagon, and insulin expression, while no further reductions were observed in the Pax6ΔDP/ΔDP mice, indicating that only the 450 bp region is required for pancreatic development. In contrast, Pax6ΔDP/ΔDP, but not Pax6ΔPE/ΔPE mice, developed stunted lacrimal gland and lens hypoplasia which was significantly more severe than that reported when only the ectodermal enhancer was deleted. This result suggested that the ectodermal enhancer must cooperate with its neighboring sequences to regulate the Pax6 ectodermal expression. Finally, we generated conditional knockouts of Prep1 in lens and pancreas, but surprisingly, did not observe any developmental defects. Together, these results provide functional evidence for the independent and synergistic roles of the Pax6 upstream enhancers, and they suggest the potential redundancy of Meis/Prep protein in Pax6 regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.