Die numerische Simulation aktueller Problemstellungen in der Geotechnik erfordert Stoffgesetze, die das Spannungs‐Dehnungsverhalten von Sand realitätsnah beschreiben. In Bezug auf monotone Lasten sind mit bestehenden Modellierungsansätzen bereits sehr gute Ergebnisse zu erzielen. Das Materialverhalten bei zyklischer Beanspruchung ist jedoch außerordentlich komplex. Selbst die derzeit leistungsfähigsten Stoffgesetze können nur einzelne Aspekte abbilden. Daher ist weitere Forschungsarbeit dringend erforderlich. Vor diesem Hintergrund stellt der Beitrag ein Stoffgesetz für Sand vor, das auf der Grenzflächenplastizität sowie dem Konzept kritischer Zustände basiert. Es kann das Verhalten des Bodens für komplexe zyklische Belastungspfade über eine breite Spanne von Dichte‐ und Spannungszuständen mit einem einzigen Parametersatz abbilden. Die Funktionsweise des Stoffgesetzes wird im Beitrag konzeptionell dargestellt. Die Ergebnisse der numerischen Simulation zyklischer undränierter Triaxialversuche werden den Ergebnissen entsprechender Laborversuche gegenübergestellt. Der Vergleich liefert eine gute Übereinstimmung. Die Eignung des Stoffgesetzes für den Einsatz in komplexen numerischen Simulationen wird anhand eines Berechnungsbeispiels gezeigt. Hierfür wurde ein Staudamm gewählt, der durch einen Erdbebenzeitverlauf an der Basis angeregt wird. Abschließend werden im Beitrag Ansätze zur Weiterentwicklung des Stoffgesetzes aufgezeigt.
Several constitutive models for sands are based on an additive split of the effective stress rate into two terms. One term accounts for the deviatoric stress ratio $$\varvec{r}$$ r , the other for the mean effective stress $${p}$$ p . While sophisticated techniques are available to account for monotonic and cyclic variations of $$\varvec{r}$$ r , the $${p}$$ p term is usually treated by means of rather rudimentary constitutive mechanisms. In particular, no plasticity sand model seems to exist whose functions take into account cyclic changes of $${p}$$ p in a realistic manner. However, cyclic changes of $${p}$$ p frequently occur in geotechnical boundary value problems and can cause irrecoverable deformation in non-cohesive soils. Present sand models significantly under- or overestimate these deformations. This issue is tackled in the paper. First, results from a comprehensive series of triaxial tests on Toyoura Sand are presented. The samples were loaded with cyclic changes of $${p}$$ p at constant stress ratio in order to study the effects of mean effective stress variations exclusively. The test results show that the samples accumulate significant irrecoverable strains throughout successive loading cycles. The results furthermore allow to investigate the effects of pressure level, pressure amplitude, stress ratio level and density on the strain evolution. Second, new constitutive functions for an existing Bounding Surface Plasticity model are proposed in the paper. They are intended to improve the simulation results obtained with the model for monotonic and cyclic changes of $${p}$$ p at constant stress ratio. The extended model is then carefully calibrated and validated using the experimental data from the triaxial tests. The results of the validation prove that the new constitutive functions have the desired effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.