Expectation-based theories of sentence processing posit that processing difficulty is determined by predictability in context. While predictability quantified via surprisal has gained empirical support, this representation-agnostic measure leaves open the question of how to best approximate the human comprehender's latent probability model. This article first describes an incremental left-corner parser that incorporates information about common linguistic abstractions such as syntactic categories, predicate-argument structure, and morphological rules as a computational-level model of sentence processing. The article then evaluates a variety of structural parsers and deep neural language models as cognitive models of sentence processing by comparing the predictive power of their surprisal estimates on self-paced reading, eye-tracking, and fMRI data collected during real-time language processing. The results show that surprisal estimates from the proposed left-corner processing model deliver comparable and often superior fits to self-paced reading and eye-tracking data when compared to those from neural language models trained on much more data. This may suggest that the strong linguistic generalizations made by the proposed processing model may help predict humanlike processing costs that manifest in latency-based measures, even when the amount of training data is limited. Additionally, experiments using Transformer-based language models sharing the same primary architecture and training data show a surprising negative correlation between parameter count and fit to self-paced reading and eye-tracking data. These findings suggest that large-scale neural language models are making weaker generalizations based on patterns of lexical items rather than stronger, more humanlike generalizations based on linguistic structure.
While the use of character models has been popular in NLP applications, it has not been explored much in the context of psycholinguistic modeling. This paper presents a character model that can be applied to a structural parser-based processing model to calculate word generation probabilities. Experimental results show that surprisal estimates from a structural processing model using this character model deliver substantially better fits to self-paced reading, eye-tracking, and fMRI data than those from large-scale language models trained on much more data. This may suggest that the proposed processing model provides a more humanlike account of sentence processing, which assumes a larger role of morphology, phonotactics, and orthographic complexity than was previously thought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.