Fish often spawn eggs with ovarian fluids that have been hypothesized to support sperm of some males over others (cryptic female choice). Alternatively, sperm reactions to ovarian fluids could reveal male strategies linked to their likely roles during spawning. Sperm of males who would usually be close to females during spawning are then expected to be better adapted to the presence of ovarian fluids than to water only, while the reverse would be expected for males that typically spawn at larger distance to the females. We tested these predictions with gametes and ovarian fluids from wild-caught lake char (Salvelinus umbla). We found that sperm of more colorful males showed increased sperm velocity in diluted ovarian fluids while sperm of paler males were fastest in water only. We then let equal numbers of sperm compete for fertilizations in the presence or absence of ovarian fluids and used microsatellite markers to assign in total 1,464 embryos (from 70 experimental trials) to their fathers. Overall, sperm of more colorful males reached higher fertilization success than sperm of pale males. This difference was enhanced by the presence of ovarian fluids and best explained by the increased sperm velocity. Sperm competitiveness was not enhanced with decreasing genetic distance to a given female, although parallel stress tests on embryos had revealed that females would profit more from mating with least related males rather than most colored ones. We conclude that sperm of more colorful males are best adapted to ovarian fluids, and that the observed reaction norms reveal male strategies rather than cryptic female choice.
The model marine broadcast-spawner barnacle Chthamalus montagui was investigated to understand its genetic structure and quantify levels of population divergence, and to make inference on historical demography in terms of time of divergence and changes in population size. We collected specimens from rocky shores of the north-east Atlantic Ocean (4 locations), Mediterranean Sea (8) and Black Sea (1). The 312 sequences 537 bp) of the mitochondrial cytochrome c oxidase I allowed to detect 130 haplotypes. High within-location genetic variability was recorded, with haplotype diversity ranging between h = 0.750 and 0.967. Parameters of genetic divergence, haplotype network and Bayesian assignment analysis were consistent in rejecting the hypothesis of panmixia. C. montagui is genetically structured in three geographically discrete populations, which corresponded to north-eastern Atlantic Ocean, western-central Mediterranean Sea, and Aegean Sea-Black Sea. These populations are separated by two main effective barriers to gene flow located at the Almeria-Oran Front and in correspondence of the Cyclades Islands. According to the ‘isolation with migration’ model, adjacent population pairs diverged during the early to middle Pleistocene transition, a period in which geological events provoked significant changes in the structure and composition of palaeocommunities. Mismatch distributions, neutrality tests and Bayesian skyline plots showed past population expansions, which started approximately in the Mindel-Riss interglacial, in which ecological conditions were favourable for temperate species and calcium-uptaking marine organisms.
Fish often spawn eggs with ovarian fluids that have been hypothesized to support sperm of some males over others (cryptic female choice). Alternatively, sperm reactions to ovarian fluids could reveal male strategies linked to their likely roles during spawning. Sperm of males who would usually be close to females during spawning are then expected to be better adapted to the presence of ovarian fluids than to water only, while the reverse would be expected for males that typically spawn at larger distance to the females. We tested these predictions with gametes and ovarian fluids from wild-caught lake char (Salvelinus umbla). We found that sperm of more colorful males showed increased sperm velocity in diluted ovarian fluids while sperm of paler males were fastest in water only. We then let equal numbers of sperm compete for fertilizations in the presence or absence of ovarian fluids and used microsatellite markers to assign in total 1,464 embryos (from 70 experimental trials) to their fathers. Overall, sperm of more colorful males reached higher fertilization success than sperm of pale males. This difference was enhanced by the presence of ovarian fluids and best explained by the increased sperm velocity. Sperm competitiveness was not enhanced with decreasing male inbreeding coefficients or decreasing genetic distance to a given female, although parallel stress tests on embryos revealed that females would profit more from mating with least related males rather than most colored ones. We conclude that sperm of more colorful males are best adapted to ovarian fluids, and that the observed reaction norms reveal male strategies rather than cryptic female choice.
Mating is rarely random in nature, but the effects of mate selection on offspring performance are still poorly understood, even in well-established models such as salmonid fish. We sampled wild lake char (Salvelinus umbla) and used their gametes to investigate the genetic consequences of different mating scenarios. In a first study, we used full-factorial breeding to experimentally separate additive genetic from maternal environmental effects. This led to 60 families and in total 1,073 embryos that were raised singly after sublethal exposures to the pathogen Aeromonas salmonicida, the common pollutant ethinylestradiol, or water only. Contrary to predictions of ‘good genes’ sexual selection, offspring of more yellow males were less tolerant to the pathogen than offspring of pale males, while male coloration did not predict offspring tolerance to ethinylestradiol. However, increased kinship between the parents had strong negative effects on embryo development in all treatment groups. In a second experiment, we monitored 1,464 singly-raised embryos that resulted from 70 pair-wise sperm competition trials. These embryos were raised in an environment that supports the growth of symbiotic microbes (sublethal stress) or in a clean environment. Offspring of yellow males were again less stress tolerant than those of pale males, and embryo development was again slowed down with increasing genetic similarity between the parents. We conclude that genetic benefits of mate selection would be strongest if females avoided genetic similarity during mate selection, for example based on MHC-linked signals, while male breeding colors seem more relevant in intra-sexual selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.