A new metal-free catalysis protocol for the oxidative coupling of nonactivated alkenes with simple carboxylic acids has been established. This method is predicated on the cooperative interaction of a diselane and a photoredox catalyst, which allows for the use of ambient air or pure O2 as the terminal oxidant. Under the title conditions, a range of both functionalized and nonfunctionalized alkenes can be readily converted into the corresponding allylic ester products with good yields (up to 89%) and excellent regioselectivity as well as good functional group tolerance.
Cooperativity has become a mainstay in the context of multicatalytic reaction design. The combination of two or more catalysts that possess mechanistically distinct activation principles within a single chemical setting can enable bond constructions that would be impossible for any of the catalysts alone. An emerging subdomain within the field of multicatalysis is characterized by single‐electron transfer processes that are sustained by the synergistic merger of sulfur or selenium organocatalysis with photoredox catalysis. From a synthetic viewpoint, such processes have tremendous value, as they can offer new and economic pathways for the concise assembly of complex molecular architectures. Thus, the aim of this Review is to highlight recent methodological progress made in this area and to contextualize representative transformations with the mechanistic underpinnings that enable these reactions.
A catalytic regime for the direct phosphatation of simple, non-polarized alkenes has been devised that is based on using ordinary, non-activated phosphoric acid diesters as the phosphate source and O as the terminal oxidant. The title method enables the direct and highly economic construction of a diverse range of allylic phosphate esters. From a conceptual viewpoint, the aerobic phosphatation is entirely complementary to traditional methods for phosphate ester formation, which predominantly rely on the use of prefunctionalized or preactivated reactants, such as alcohols and phosphoryl halides. The title transformation is enabled by the interplay of a photoredox and a selenium π-acid catalyst and involves a sequence of single-electron-transfer processes.
A novel iodine(iii)-mediated synthesis of substituted phenanthrenes from ortho-vinylated biaryl derivatives through 6-endo-trig selective oxidative intramolecular arene–alkene coupling is reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.