Elementary building blocks for quantum repeaters based on fiber channels and memory stations are analyzed. Implementations are considered for three different physical platforms, for which suitable components are available: quantum dots, trapped atoms and ions, and color centers in diamond. The performances of basic quantum repeater links for these platforms are evaluated and compared, both for present‐day, state‐of‐the‐art experimental parameters as well as for parameters that can in principle be reached in the future. The ultimate goal is to experimentally explore regimes at intermediate distances—up to a few 100 km—in which the repeater‐assisted secret key transmission rates exceed the maximal rate achievable via direct transmission. Two different protocols are considered, one of which is better adapted to the higher source clock rate and lower memory coherence time of the quantum dot platform, while the other circumvents the need of writing photonic quantum states into the memories in a heralded, nondestructive fashion. The elementary building blocks and protocols can be connected in a modular form to construct a quantum repeater system that is potentially scalable to large distances.
We establish the Ahlswede dichotomy for arbitrarily varying classicalquantum wiretap channels, i.e., either the deterministic secrecy capacity of the channel is zero, or it equals its randomness-assisted secrecy capacity. We analyze the secrecy capacity of these channels when the sender and the receiver use various resources. It turns out that randomness, common randomness, and correlation as resources are very helpful for achieving a positive secrecy capacity. We prove the phenomenon "super-activation" for arbitrarily varying classical-quantum wiretap channels, i.e., two channels, both with zero deterministic secrecy capacity, if used together allow perfect secure transmission.
We determine the secrecy capacities under common randomness assisted coding of arbitrarily varying classical-quantum wiretap channels. Furthermore, we determine the secrecy capacity of a mixed channel model which is compound from the sender to the legitimate receiver and varies arbitrarily from the sender to the eavesdropper. We examine when the secrecy capacity is a continuous function of the system parameters as an application and show that resources, e.g., having access to a perfect copy of the outcome of a random experiment, can guarantee continuity of the capacity function of arbitrarily varying classical-quantum wiretap channels.
Identification capacity is developed without randomization at neither the encoder nor the decoder. In particular, full characterization is established for the deterministic identification (DI) capacity for the Gaussian channel and for the general discrete memoryless channel (DMC) with and without constraints. Originally, Ahlswede and Dueck established the identification capacity with local randomness given at the encoder, resulting in a double exponential number of messages in the block length. In the deterministic setup, the number of messages scales exponentially, as in Shannon's transmission paradigm, but the achievable identification rates can be significantly higher than those of the transmission rates. Ahlswede and Dueck further stated a capacity result for the deterministic setting of a DMC, but did not provide an explicit proof. In this paper, a detailed proof is given for both the Gaussian channel and the general DMC. The DI capacity of a Gaussian channel is infinite regardless of the noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.