Drug-like compounds are most of the time denied approval and use owing to the unexpected clinical side effects and cross-reactivity observed during clinical trials. These unexpected outcomes resulting in significant increase in attrition rate centralizes on the selected drug targets. These targets may be disease candidate proteins or genes, biological pathways, disease-associated microRNAs, disease-related biomarkers, abnormal molecular phenotypes, crucial nodes of biological network or molecular functions. This is generally linked to several factors, including incomplete knowledge on the drug targets and unpredicted pharmacokinetic expressions upon target interaction or off-target effects. A method used to identify targets, especially for polygenic diseases, is essential and constitutes a major bottleneck in drug development with the fundamental stage being the identification and validation of drug targets of interest for further downstream processes. Thus, various computational methods have been developed to complement experimental approaches in drug discovery. Here, we present an overview of various computational methods and tools applied in predicting or validating drug targets and drug-like molecules. We provide an overview on their advantages and compare these methods to identify effective methods which likely lead to optimal results. We also explore major sources of drug failure considering the challenges and opportunities involved. This review might guide researchers on selecting the most efficient approach or technique during the computational drug discovery process.
Genomic medicine is set to drastically improve clinical care globally due to high throughput technologies which enable speedy in silico detection and analysis of clinically relevant mutations. However, the variability in the in silico prediction methods and categorization of functionally relevant genetic variants can pose specific challenges in some populations. In silico mutation prediction tools could lead to high rates of false positive/negative results, particularly in African genomes that harbor the highest genetic diversity and that are disproportionately underrepresented in public databases and reference panels. These issues are particularly relevant with the recent increase in initiatives, such as the Human Heredity and Health (H3Africa), that are generating huge amounts of genomic sequence data in the absence of policies to guide genomic researchers to return results of variants in so-called actionable genes to research participants. This report (i) provides an inventory of publicly available Whole Exome/Genome data from Africa which could help improve reference panels and explore the frequency of pathogenic variants in actionable genes and related challenges, (ii) reviews available in silico prediction mutation tools and the criteria for categorization of pathogenicity of novel variants, and (iii) proposes recommendations for analyzing pathogenic variants in African genomes for their use in research and clinical practice. In conclusion, this work proposes criteria to define mutation pathogenicity and actionability in human genetic research and clinical practice in Africa and recommends setting up an African expert panel to oversee the proposed criteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.