Surface-enhanced Raman scattering (SERS) has become a powerful tool in chemical, material and life sciences, owing to its intrinsic features (i.e., fingerprint recognition capabilities and high sensitivity) and to the technological advancements that have lowered the cost of the instruments and improved their sensitivity and user-friendliness. We provide an overview of the most significant aspects of SERS. First, the phenomena at the basis of the SERS amplification are described. Then, the measurement of the enhancement and the key factors that determine it (the materials, the hot spots, and the analyte-surface distance) are discussed. A section is dedicated to the analysis of the relevant factors for the choice of the excitation wavelength in a SERS experiment. Several types of substrates and fabrication methods are illustrated, along with some examples of the coupling of SERS with separation and capturing techniques. Finally, a representative selection of applications in the biomedical field, with direct and indirect protocols, is provided. We intentionally avoided using a highly technical language and, whenever possible, intuitive explanations of the involved phenomena are provided, in order to make this review suitable to scientists with different degrees of specialization in this field.
Singly and multiply doped graphene oxide quantum dots have been synthesized by a simple electrochemical method using water as solvent. The obtained materials have been characterized by photoemission spectroscopy and scanning tunneling microscopy, in order to get a detailed picture of their chemical and structural properties. The electrochemical activity toward the oxygen reduction reaction of the doped graphene oxide quantum dots has been investigated by cyclic voltammetry and rotating disk electrode measurements, showing a clear decrease of the overpotential as a function of the dopant according to the sequence: N ∼ B > B,N. Moreover, assisted by density functional calculations of the Gibbs free energy associated with every electron transfer, we demonstrate that the selectivity of the reaction is controlled by the oxidation states of the dopants: as-prepared graphene oxide quantum dots follow a two-electron reduction path that leads to the formation of hydrogen peroxide, whereas after the reduction with NaBH4, the same materials favor a four-electron reduction of oxygen to wate
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.