Potassium (K +)channel function is fundamental to many physiological processes. However, components and mechanisms regulating the activity of plant K + channels remain poorly understood. Here, we show that the calcium (Ca 2+ ) sensor CBL4 together with the interacting protein kinase CIPK6 modulates the activity and plasma membrane (PM) targeting of the K + channel AKT2 from Arabidopsis thaliana by mediating translocation of AKT2 to the PM in plant cells and enhancing AKT2 activity in oocytes. Accordingly, akt2, cbl4 and cipk6 mutants share similar developmental and delayed flowering phenotypes. Moreover, the isolated regulatory C-terminal domain of CIPK6 is sufficient for mediating CBL4-and Ca 2+-dependent channel translocation from the endoplasmic reticulum membrane to the PM by a novel targeting pathway that is dependent on dual lipid modifications of CBL4 by myristoylation and palmitoylation. Thus, we describe a critical mechanism of ion-channel regulation where a Ca 2+ sensor modulates K + channel activity by promoting a kinase interaction-dependent but phosphorylation-independent translocation of the channel to the PM.
Tumor cells activate autophagy in response to chemotherapyinduced DNA damage as a survival program to cope with metabolic stress. Here, we provide in vitro and in vivo evidence that histone deacetylase (HDAC)10 promotes autophagy-mediated survival in neuroblastoma cells. We show that both knockdown and inhibition of HDAC10 effectively disrupted autophagy associated with sensitization to cytotoxic drug treatment in a panel of highly malignant V-MYC myelocytomatosis viral-related oncogene, neuroblastoma derived-amplified neuroblastoma cell lines, in contrast to nontransformed cells. HDAC10 depletion in neuroblastoma cells interrupted autophagic flux and induced accumulation of autophagosomes, lysosomes, and a prominent substrate of the autophagic degradation pathway, p62/sequestosome 1. Enforced HDAC10 expression protected neuroblastoma cells against doxorubicin treatment through interaction with heat shock protein 70 family proteins, causing their deacetylation. Conversely, heat shock protein 70/heat shock cognate 70 was acetylated in HDAC10-depleted cells. HDAC10 expression levels in high-risk neuroblastomas correlated with autophagy in gene-set analysis and predicted treatment success in patients with advanced stage 4 neuroblastomas. Our results demonstrate that HDAC10 protects cancer cells from cytotoxic agents by mediating autophagy and identify this HDAC isozyme as a druggable regulator of advanced-stage tumor cell survival. Moreover, these results propose a promising way to considerably improve treatment response in the neuroblastoma patient subgroup with the poorest outcome.drug resistance | HDAC inhibitor | childhood tumors A utophagy is an evolutionarily highly conserved process that can be induced by metabolic or therapeutic stress, such as DNA damage-inducing drugs (1). The two dominant types of autophagy are macroautophagy and chaperone-mediated autophagy (CMA) (2). Macroautophagy is regulated by autophagyrelated genes (ATGs), including beclin-1 (ATG6) and microtubule-associated protein 1 light chain 3 (LC3) (ATG8), and involves the sequestration of cytoplasmic components within a double-membrane structure called the autophagosome and successive delivery to lysosomes for degradation (reviewed in ref.3). CMA targets specific cytosolic proteins to the lysosomes for protein degradation (4). During CMA, the cytosolic chaperone heat shock cognate (Hsc)70 binds proteins targeted for degradation and translocates them to the lysosomes (5), where they bind to the substrate protein receptor lysosome-associated membrane protein type 2A (LAMP-2A) (6).Inhibition of histone deacetylases (HDACs) by HDAC inhibitors (HDACis) have been shown to cause significant anti-tumor effects, including cell-cycle arrest, differentiation, and apoptosis, in a broad spectrum of hematologic and solid tumors (reviewed in ref. 7). The efficacy of HDACis are currently being evaluated for treating various cancers in clinical trials (7-9). Recent research carried out in several tumor cell lines has shown that apoptosis induced by HDACis i...
Calcineurin B-like proteins (CBLs) represent a family of calcium sensor proteins that interact with a group of serine/threonine kinases designated as CBL-interacting protein kinases (CIPKs). CBL-CIPK complexes are crucially involved in relaying plant responses to many environmental signals and in regulating ion fluxes. However, the biochemical characterization of CBL-CIPK complexes has so far been hampered by low activities of recombinant CIPKs. Here, we report on an efficient wheat germ extract-based in vitro transcription/translation protocol that yields active full-length wild-type CIPK proteins. We identified a conserved serine residue within the C terminus of CBLs as being phosphorylated by their interacting CIPKs. Remarkably, our studies revealed that CIPK-dependent CBL phosphorylation is strictly dependent on CBL-CIPK interaction via the CIPK NAF domain. The phosphorylation status of CBLs does not appear to influence the stability, localization, or CIPK interaction of these calcium sensor proteins in general. However, proper phosphorylation of CBL1 is absolutely required for the in vivo activation of the AKT1 K ؉ channel by CBL1-CIPK23 and CBL9-CIPK23 complexes in oocytes. Moreover, we show that by combining CBL1, CIPK23, and AKT1, we can faithfully reconstitute CBL-dependent enhancement of phosphorylation of target proteins by CIPKs in vitro. In addition, we report that phosphorylation of CBL1 by CIPK23 is also required for the CBL1-dependent enhancement of CIPK23 activity toward its substrate. Together, these data identify a novel general regulatory mechanism of CBL-CIPK complexes in that CBL phosphorylation at their flexible C terminus likely provokes conformational changes that enhance specificity and activity of CBL-CIPK complexes toward their target proteins.
The retinal L-type Ca 2؉ channel Cav1.4 is distinguished from all other members of the high voltage-activated (HVA) Ca 2؉ channel family by lacking Ca 2؉ -calmodulin-dependent inactivation. In synaptic terminals of photoreceptors and bipolar cells, this feature is essential to translate graded membrane depolarizations into sustained Ca 2؉ influx and tonic glutamate release. The sequences conferring Ca 2؉ -dependent inactivation (CDI) are conserved throughout the HVA calcium channel family, raising the question of how Cav1.4 manages to switch off CDI. Here, we identify an autoinhibitory domain in the distal C terminus of Cav1.4 that serves to abolish CDI. We show that this domain (ICDI, inhibitor of CDI) uncouples the molecular machinery conferring CDI from the inactivation gate by binding to the EF hand motif in the proximal C terminus. Deletion of ICDI completely restores Ca 2؉ -calmodulinmediated CDI in Cav1.4. CDI can be switched off again in the truncated Cav1.4 channel by coexpression of ICDI, indicating that ICDI works as an autonomous unit. Furthermore, we show that in the Cav1.2 L-type Ca 2؉ -channel replacement of the distal C terminus by the corresponding sequence of Cav1.4 is sufficient to block CDI. This finding suggests that autoinhibition of CDI can be introduced principally into other Ca 2؉ channel types. Our data provide a previously undescribed perspective on the regulation of HVA calcium channels by Ca 2؉ .calmodulin ͉ Cav1.4 ͉ retina ͉ Ca channels
Hyperpolarization-activated cyclic nucleotide-gated channels (HCN1-4) play a crucial role in the regulation of cell excitability. Importantly, they contribute to spontaneous rhythmic activity in brain and heart. HCN channels are principally activated by membrane hyperpolarization and binding of cAMP. Here, we identify tyrosine phosphorylation by Src kinase as another mechanism affecting channel gating. Inhibition of Src by specific blockers slowed down activation kinetics of native and heterologously expressed HCN channels. The same effect on HCN channel activation was observed in cells cotransfected with a dominant-negative Src mutant. Immunoprecipitation demonstrated that Src binds to and phosphorylates native and heterologously expressed HCN2. Src interacts via its SH3 domain with a sequence of HCN2 encompassing part of the C-linker and the cyclic nucleotide binding domain. We identified a highly conserved tyrosine residue in the C-linker of HCN channels (Tyr 476 in HCN2) that confers modulation by Src. Replacement of this tyrosine by phenylalanine in HCN2 or HCN4 abolished sensitivity to Src inhibitors. Mass spectrometry confirmed that Tyr 476 is phosphorylated by Src. Our results have functional implications for HCN channel gating. Furthermore, they indicate that tyrosine phosphorylation contributes in vivo to the fine tuning of HCN channel activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.