Photorespiration recycles ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) oxygenation product, 2-phosphoglycolate, back into the Calvin Cycle. Natural photorespiration, however, limits agricultural productivity by dissipating energy and releasing CO2. Several photorespiration bypasses have been previously suggested but were limited to existing enzymes and pathways that release CO2. Here, we harness the power of enzyme and metabolic engineering to establish synthetic routes that bypass photorespiration without CO2 release. By defining specific reaction rules, we systematically identified promising routes that assimilate 2-phosphoglycolate into the Calvin Cycle without carbon loss. We further developed a kinetic–stoichiometric model that indicates that the identified synthetic shunts could potentially enhance carbon fixation rate across the physiological range of irradiation and CO2, even if most of their enzymes operate at a tenth of Rubisco’s maximal carboxylation activity. Glycolate reduction to glycolaldehyde is essential for several of the synthetic shunts but is not known to occur naturally. We, therefore, used computational design and directed evolution to establish this activity in two sequential reactions. An acetyl-CoA synthetase was engineered for higher stability and glycolyl-CoA synthesis. A propionyl-CoA reductase was engineered for higher selectivity for glycolyl-CoA and for use of NADPH over NAD+, thereby favoring reduction over oxidation. The engineered glycolate reduction module was then combined with downstream condensation and assimilation of glycolaldehyde to ribulose 1,5-bisphosphate, thus providing proof of principle for a carbon-conserving photorespiration pathway.
Carbon dioxide enters the biosphere via one of two mechanisms: carboxylation, in which CO is attached to an existing metabolite, or reduction, in which CO is converted to formate or carbon monoxide before further assimilation. Here, we focus on the latter mechanism which usually receives less attention. To better understand the possible advantages of the 'reduction-first' approach, we compare the two general strategies according to the kinetics of the CO-capturing enzymes, and the resource consumption of the subsequent pathways. We show that the best CO reducing enzymes can compete with the best carboxylases. We further demonstrate that pathways that fix CO by first reducing it to formate could have an advantage over the majority of their carboxylation-only counterparts in terms of ATP-efficiency and hence biomass yield. We discuss and elaborate on the challenges of implementing 'reduction-first' pathways, including the thermodynamic barrier of CO reduction. We believe that pathways based on CO reduction are a valuable addition to nature's arsenal for capturing inorganic carbon and could provide promising metabolic solutions that have been previously overlooked.
Stem cells reside in specialized niches that are critical for their function. Upon activation hair follicle stem cells (HFSCs) exit their niche to generate the outer root sheath (ORS), but a subset of ORS progeny returns to the niche to resume a SC state. Mechanisms of this fate reversibility are unclear. We show that the ability of ORS cells to return to the SC state requires suppression of a metabolic switch from glycolysis to oxidative phosphorylation and glutamine metabolism that occurs during early HFSC lineage progression. HFSC fate reversibility and glutamine metabolism are regulated by the mammalian target of rapamycin complex 2 (mTORC2)-Akt signaling axis within the niche. Deletion of mTORC2 results in a failure to re-establish the HFSC niche, defective hair follicle regeneration, and compromised long-term maintenance of HFSCs. These findings highlight the importance of spatiotemporal control of SC metabolic states in organ homeostasis.
The ribulose monophosphate (RuMP) cycle is a highly efficient route for the assimilation of reduced one-carbon compounds. Despite considerable research, the RuMP cycle has not been fully implemented in model biotechnological organisms such as Escherichia coli, mainly since the heterologous establishment of the pathway requires addressing multiple challenges: sufficient formaldehyde production, efficient formaldehyde assimilation, and sufficient regeneration of the formaldehyde acceptor, ribulose 5-phosphate. Here, by efficiently producing formaldehyde from sarcosine oxidation and ribulose 5-phosphate from exogenous xylose, we set aside two of these concerns, allowing us to focus on the particular challenge of establishing efficient formaldehyde assimilation via the RuMP shunt, the linear variant of the RuMP cycle. We have generated deletion strains whose growth depends, to different extents, on the activity of the RuMP shunt, thus incrementally increasing the selection pressure for the activity of the synthetic pathway. Our final strain depends on the activity of the RuMP shunt for providing the cell with almost all biomass and energy needs, presenting an absolute coupling between growth and activity of key RuMP cycle components. This study shows the value of a stepwise problem solving approach when establishing a difficult but promising pathway, and is a strong basis for future engineering, selection, and evolution of model organisms for growth via the RuMP cycle.
Nucleoplasmin is a histone chaperone that consists of a pentameric N-terminal domain and an unstructured C-terminal tail. The pentameric core domain, a doughnut-like structure with a central pore, is only found in the nucleoplasmin family. Here, we report the first structure of a nucleoplasmin-like domain (NPL) from the unrelated Drosophila protein, FKBP39, and we present evidence that this protein associates with chromatin. Furthermore, we show that two other chromatin proteins, Arabidopsis thaliana histone deacetylase type 2 (HD2) and Saccharomyces cerevisiae Fpr4, share the NPL fold and form pentamers, or a dimer of pentamers in the case of HD2. Thus, we propose a new family of proteins that share the pentameric nucleoplasmin-like NPL domain and are found in protists, fungi, plants and animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.