A series of 2,6,9-trisubstituted purine derivatives have been synthesized and investigated for their potential role as antitumor agents. Twelve compounds were obtained by a three step synthetic procedure using microwave irradiation in a pivotal step. All compounds were evaluated in vitro to determine their potential effect on cell toxicity by the MTT method and flow cytometry analysis on four cancer cells lines and Vero cells. Three out of twelve compounds were found to be promising agents compared to a known and effective anticancer drug, etoposide, in three out of four cancer cell lines assayed with considerable selectivity. Preliminary flow cytometry data suggests that compounds mentioned above induce apoptosis on these cells. The main structural requirements for their activity for each cancer cell line were characterized with a preliminary pharmacophore model, which identified aromatic centers, hydrogen acceptor/donor center and a hydrophobic area. These features were consistent with the cytotoxic activity of the assayed compounds.
Continuing with a program to develop new quinone derivatives as biologically active compounds, we designed and synthesized a new series of aryloxy‐quinones, which were evaluated in vitro against Trypanosoma cruzi in epimastigote form. Chemical modifications in three specific moieties on the aryloxy‐quinone core were considered for developing new anti‐T. cruzi agents. The majority of our new quinones showed higher potency (IC50 values of <0.70 µM) than nifurtimox, a known pharmaceutical used as a baseline drug (IC50 values of 7.00 µM); however, only two of them elicited higher selectivity than nifurtimox against Vero cells. A structure–activity relationship analysis provided information about the stereoelectronic features of these compounds, which are responsible for an increase in trypanosomicidal activity. Using a pharmacophore model, we mapped the substitution patterns of the five pharmacophoric features of trypanosomicidal activity. We chose the Epc1 compounds and found no relationship with the trypanosomicidal effects. These results provided useful information about the structural characteristics for developing new aryloxy‐quinones with higher potency against the protozoan parasite T. cruzi.
Since the Hedgehog signaling pathway has been associated with cancer, it has emerged as a therapeutic target for cancer therapy. The main target among the key Hedgehog proteins is the GPCR-like Smo receptor. Therefore, some Smo antagonists that have entered clinical trials, including the US FDA-approved drugs vismodegib and sonidegib, to treat basal cell carcinoma and medulloblastoma. However, early resistance of these drugs has spawned the need to understand the molecular bases of this phenomena. We therefore reviewed details about Smo receptor structures and the best Smo antagonist chemical structures. In addition, we discussed strategies that should be considered to develop new, safer generations of Smo antagonists that avoid current clinical limitations.
We designed, synthesized, and evaluated novel 2,6,9-trisubstituted purine derivatives for their prospective role as antitumor compounds. Using simple and efficient methodologies, 31 compounds were obtained. We tested these compounds in vitro to draw conclusions about their cell toxicity on seven cancer cells lines and one non-neoplastic cell line. Structural requirements for antitumor activity on two different cancer cell lines were analyzed with SAR and 3D-QSAR. The 3D-QSAR models showed that steric properties could better explain the cytotoxicity of compounds than electronic properties (70% and 30% of contribution, respectively). From this analysis, we concluded that an arylpiperazinyl system connected at position 6 of the purine ring is beneficial for cytotoxic activity, while the use of bulky systems at position C-2 of the purine is not favorable. Compound 7h was found to be an effective potential agent when compared with a currently marketed drug, cisplatin, in four out of the seven cancer cell lines tested. Compound 7h showed the highest potency, unprecedented selectivity, and complied with all the Lipinski rules. Finally, it was demonstrated that 7h induced apoptosis and caused cell cycle arrest at the S-phase on HL-60 cells. Our study suggests that substitution in the purine core by arylpiperidine moiety is essential to obtain derivatives with potential anticancer activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.