Transition state structures are central to the rates and outcomes of chemical reactions, but their fleeting existence often leaves their properties to be inferred rather than observed. By treating polybutadiene with a difluorocarbene source, we embedded gem-difluorocyclopropanes (gDFCs) along the polymer backbone. We report that mechanochemical activation of the polymer under tension opens the gDFCs and traps a 1,3-diradical that is formally a transition state in their stress-free electrocyclic isomerization. The trapped diradical lives long enough that we can observe its noncanonical participation in bimolecular addition reactions. Furthermore, the application of a transient tensile force induces a net isomerization of the trans-gDFC into its less-stable cis isomer, leading to the counterintuitive result that the gDFC contracts in response to a transient force of extension.
SummaryDinoflagellates of the genus Symbiodinium express broad diversity in both genetic identity (phylogeny) and photosynthetic function to presumably optimize ecological success across extreme light environments; however, whether differences in the primary photobiological characteristics that govern photosynthetic optimization are ultimately a function of phylogeny is entirely unresolved.We applied a novel fast repetition rate fluorometry approach to screen genetically distinct Symbiodinium types (n = 18) spanning five clades (A-D, F) for potential phylogenetic trends in factors modulating light absorption (effective cross-section, reaction center content) and utilization (photochemical vs dynamic nonphotochemical quenching;The variability of PSII light absorption was independent of phylogenetic designation, but closely correlated with cell size across types, whereas PSII light utilization intriguingly followed one of three characteristic patterns: (1) Our functional trait-based approach shows, for the first time, how Symbiodinium photosynthetic function is governed by the interplay between phylogenetically dependent and independent traits, and is potentially a means to reconcile complex biogeographic patterns of Symbiodinium phylogenetic diversity in nature.
In bacteria, the tubulin homolog FtsZ assembles a cytokinetic ring, termed the Z-ring, and plays a key role in the machinery that constricts to divide the cells. Many archaea encode two FtsZ proteins from distinct families, FtsZ1 and FtsZ2, of previously unclear functions. Here we show that Haloferax volcanii cannot divide properly without either or both FtsZ proteins, but DNA replication continues, and cells proliferate in alternative ways, such as blebbing and fragmentation, via remarkable envelope plasticity. FtsZ1 and FtsZ2 co-localise to form the dynamic division ring. However, FtsZ1 can assemble rings independently of FtsZ2, and stabilises FtsZ2 in the ring, whereas FtsZ2 functions primarily in the constriction mechanism. FtsZ1 also influenced cell shape suggesting it forms a hub-like platform at midcell for the assembly of shape-related systems too. Both FtsZ1 and FtsZ2 are widespread in archaea with a single S-layer envelope, but archaea with a pseudomurein wall and division septum only have FtsZ1. FtsZ1 is therefore likely to provide a fundamental recruitment role in diverse archaea, and FtsZ2 is required for constriction of a flexible S-layer envelope, where an internal constriction force might dominate the division mechanism, in contrast to the single-FtsZ bacteria and archaea that divide primarily by wall ingrowth.
A method for constructing diabatic potential energy matrices by interpolation of ab initio quantum chemistry data is described and tested. This approach is applicable to any number of interacting electronic states, and relies on a formalism and a computational procedure that are more general than those presented previously for the case of two electronic states. The method is tested against an analytic model for three interacting electronic states of NH(3) (+).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.