Cysteine proteases are important targets for the discovery of novel therapeutics for many human diseases. From parasitic diseases to cancer, cysteine proteases follow a common mechanism, the formation of an encounter complex with subsequent nucleophilic reactivity of the catalytic cysteine thiol group toward the carbonyl carbon of a peptide bond or an electrophilic group of an inhibitor. Modulation of target enzymes occurs preferably by covalent modification, which imposes challenges in balancing cross-reactivity and selectivity. Given the resurgence of irreversible covalent inhibitors, can they impair off-target effects or are reversible covalent inhibitors a better route to selectivity? This Perspective addresses how small molecule inhibitors may achieve selectivity for different cathepsins, cruzain, rhodesain, and falcipain-2. We discuss target- and ligand-based designs emphasizing repurposing inhibitors from one cysteine protease to others.
The number of bandwidth-hungry applications and services is constantly growing. HTTP adaptive streaming of audio-visual content accounts for the majority of today's internet traffic. Although the internet bandwidth increases also constantly, audio-visual compression technology is inevitable and we are currently facing the challenge to be confronted with multiple video codecs.This paper proposes a multi-codec DASH dataset comprising AVC, HEVC, VP9, and AV1 in order to enable interoperability testing and streaming experiments for the efficient usage of these codecs under various conditions. We adopt state of the art encoding and packaging options and also provide basic quality metrics along with the DASH segments. Additionally, we briefly introduce a multi-codec DASH scheme and possible usage scenarios. Finally, we provide a preliminary evaluation of the encoding efficiency in the context of HTTP adaptive streaming services and applications.
Predicting compounds with single- and multi-target activity and exploring origins of compound specificity and promiscuity is of high interest for chemical biology and drug discovery. We present a large-scale analysis of compound promiscuity including two major components. First, high-confidence datasets of compounds with multi- and corresponding single-target activity were extracted from biological screening data. Positive and negative assay results were taken into account and data completeness was ensured. Second, these datasets were investigated using diagnostic machine learning to systematically distinguish between compounds with multi- and single-target activity. Models built on the basis of chemical structure consistently produced meaningful predictions. These findings provided evidence for the presence of structural features differentiating promiscuous and non-promiscuous compounds. Machine learning under varying conditions using modified datasets revealed a strong influence of nearest neighbor relationship on the predictions. Many multi-target compounds were found to be more similar to other multi-target compounds than single-target compounds and vice versa, which resulted in consistently accurate predictions. The results of our study confirm the presence of structural relationships that differentiate promiscuous and non-promiscuous compounds.
Small molecules with multitarget activity are capable of triggering polypharmacological effects and are of high interest in drug discovery. Compared to single-target compounds, promiscuity also affects drug distribution and pharmacodynamics and alters ADMET characteristics. Features distinguishing between compounds with single-and multitarget activity are currently only little understood. On the basis of systematic data analysis, we have assembled large sets of promiscuous compounds with activity against related or functionally distinct targets and the corresponding compounds with single-target activity. Machine learning predicted promiscuous compounds with surprisingly high accuracy. Molecular similarity analysis combined with control calculations under varying conditions revealed that accurate predictions were largely determined by structural nearest-neighbor relationships between compounds from different classes. We also found that large proportions of promiscuous compounds with activity against related or unrelated targets and corresponding single-target compounds formed analog series with distinct chemical space coverage, which further rationalized the predictions. Moreover, compounds with activity against proteins from functionally distinct classes were often active against unique targets that were not covered by other promiscuous compounds. The results of our analysis revealed that nearest-neighbor effects determined the prediction of promiscuous compounds and that preferential partitioning of compounds with single-and multitarget activity into structurally distinct analog series was responsible for such effects, hence providing a rationale for the presence of different structure−promiscuity relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.