The use of methanol as a fuel and chemical feedstock could become very important in the development of a more sustainable society if methanol could be efficiently obtained from the direct reduction of CO2 using solar-generated hydrogen. If hydrogen production is to be decentralized, small-scale CO2 reduction devices are required that operate at low pressures. Here, we report the discovery of a Ni-Ga catalyst that reduces CO2 to methanol at ambient pressure. The catalyst was identified through a descriptor-based analysis of the process and the use of computational methods to identify Ni-Ga intermetallic compounds as stable candidates with good activity. We synthesized and tested a series of catalysts and found that Ni5Ga3 is particularly active and selective. Comparison with conventional Cu/ZnO/Al2O3 catalysts revealed the same or better methanol synthesis activity, as well as considerably lower production of CO. We suggest that this is a first step towards the development of small-scale low-pressure devices for CO2 reduction to methanol.
Promoter elements enhance the activity and selectivity of heterogeneous catalysts. Here, we show how methanol synthesis from synthesis gas over copper (Cu) nanoparticles is boosted by zinc oxide (ZnO) nanoparticles. By combining surface area titration, electron microscopy, activity measurement, density functional theory calculations, and modeling, we show that the promotion is related to Zn atoms migrating in the Cu surface. The Zn coverage is quantitatively described as a function of the methanol synthesis conditions and of the size-dependent thermodynamic activities of the Cu and ZnO nanoparticles. Moreover, experimental data reveal a strong interdependency of the methanol synthesis activity and the Zn coverage. These results demonstrate the size-dependent activities of nanoparticles as a general means to design synergetic functionality in binary nanoparticle systems.
Many catalytic reactions under fixed conditions exhibit oscillatory behaviour. The oscillations are often attributed to dynamic changes in the catalyst surface. So far, however, such relationships were difficult to determine for catalysts consisting of supported nanoparticles. Here, we employ a nanoreactor to study the oscillatory CO oxidation catalysed by Pt nanoparticles using time-resolved high-resolution transmission electron microscopy, mass spectrometry and calorimetry. The observations reveal that periodic changes in the CO oxidation are synchronous with a periodic refacetting of the Pt nanoparticles. The oscillatory reaction is modelled using density functional theory and mass transport calculations, considering the CO adsorption energy and the oxidation rate as site-dependent. We find that to successfully explain the oscillations, the model must contain the phenomenon of refacetting. The nanoreactor approach can thus provide atomic-scale information that is specific to surface sites. This will improve the understanding of dynamic properties in catalysis and related fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.