We report an Ir(I)-catalyzed kinetic resolution of secondary allylic carbonates allowing for their isolation in up to 98% ee. Importantly, the study documents the synthesis and use of a new class of chiral [2.2.2]-bicyclooctadiene ligands for iridium.
The Human Pangenome Reference Consortium (HPRC) presents a first draft human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals. These assemblies cover more than 99% of the expected sequence and are more than 99% accurate at the structural and base-pair levels. Based on alignments of the assemblies, we generated a draft pangenome that captures known variants and haplotypes, reveals novel alleles at structurally complex loci, and adds 119 million base pairs of euchromatic polymorphic sequence and 1,529 gene duplications relative to the existing reference, GRCh38. Roughly 90 million of the additional base pairs derive from structural variation. Using our draft pangenome to analyze short-read data reduces errors when discovering small variants by 34% and boosts the detected structural variants per haplotype by 104% compared to GRCh38-based workflows, and by 34% compared to using previous diversity sets of genome assemblies.
Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals1. These assemblies cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels. Based on alignments of the assemblies, we generate a draft pangenome that captures known variants and haplotypes and reveals new alleles at structurally complex loci. We also add 119 million base pairs of euchromatic polymorphic sequences and 1,115 gene duplications relative to the existing reference GRCh38. Roughly 90 million of the additional base pairs are derived from structural variation. Using our draft pangenome to analyse short-read data reduced small variant discovery errors by 34% and increased the number of structural variants detected per haplotype by 104% compared with GRCh38-based workflows, which enabled the typing of the vast majority of structural variant alleles per sample.
Ribbon synapses of cochlear inner hair cells (IHCs) undergo molecular assembly and extensive functional and structural maturation before hearing onset. Here, we characterized the nanostructure of IHC synapses from late prenatal mouse embryo stages (embryonic days 14-18) into adulthood [postnatal day (P)48] using electron microscopy and tomography as well as optical nanoscopy of apical turn organs of Corti. We find that synaptic ribbon precursors arrive at presynaptic active zones (AZs) after afferent contacts have been established. These ribbon precursors contain the proteins RIBEYE and piccolino, tether synaptic vesicles and their delivery likely involves active, microtubule-based transport pathways. Synaptic contacts undergo a maturational transformation from multiple small to one single, large AZ. This maturation is characterized by the fusion of ribbon precursors with membraneanchored ribbons that also appear to fuse with each other. Such fusion events are most frequently encountered around P12 and hence, coincide with hearing onset in mice. Thus, these events likely underlie the morphological and functional maturation of the AZ. Moreover, the postsynaptic densities appear to undergo a similar refinement alongside presynaptic maturation. Blockwise addition of ribbon material by fusion as found during AZ maturation might represent a general mechanism for modulating ribbon size. synaptogenesis | presynaptic development | ribbon synapse maturation | synaptic heterogeneity I n mammals, synaptic sound encoding occurs at the first auditory synapse between cochlear inner hair cells (IHCs) and postsynaptic neurites of afferent spiral ganglion neurons (SGNs). The highly specialized IHC presynaptic active zones (AZs) are characterized by the presence of proteinaceous electron-dense bodies, called "synaptic ribbons," which are primarily composed of the structural cytomatrix protein RIBEYE (1, 2). Ribbons provide presynaptic scaffolding, cluster and functionally regulate presynaptic Ca 2+ channels at the AZ membrane (3-5), and tether a halo of synaptic vesicles (SVs) (6). This latter feature is thought to enable rapid and indefatigable vesicular replenishment to the release site-even during periods of persistent stimulation (3,5,7,8).In mice, hearing onset occurs around postnatal day (P)12 (9) before which, IHC presynaptic AZs undergo a range of structural and functional refinements. For example, extrasynaptically localized Ca 2+ channels are progressively eliminated from the nonsynaptic basolateral plasma membrane and form-in concert with the corresponding postsynaptic glutamate receptor patchestightly confined clusters at mature presynaptic AZs (3, 10). Moreover, otoferlin-a large Ca 2+ -binding multi-C 2 domain protein (11, 12)-likely replaces synaptotagmins as the putative Ca 2+ sensor of IHC release during the first postnatal week (13). This finding reflects a key landmark of functional maturation of this unconventional high-throughput release machinery and is essentially required to faithfully orchestrate vesicular...
l,l-Dicyano-2-phenyl-1,8a-dihydroazulene (H-D) and a series of p-phenyl-substituted derivatives (R-D, R; NOa, CN, Br, C1, CH3,OCH3, and NH2) were investigated by time-resolved and steady-state photochemical methods. The dihydroazulenes (DHAs) undergo an efficient photoreaction to the corresponding vinylheptafulvenes (VHFs), the quantum yield (@.D+v) at room temperature ranges from 0.1 to 0.6. The VHFs (XV = 440-470 nm) are nonemitting and photochemically nonreactive and undergo a thermal rearrangement. The activation energy for this back-reaction is 18-21 kcal/mol. The A factor is in the (0.01-5) X 1Olo s-l range; it varies with substituent and increases with increasing solvent polarity. The photoproduct is formed via a singlet pathway, IDHA* -VHF; triplet states are not involved in this reaction. Fluorescence from the DHAs was observed, weakly in fluid solution and most efficiently in glasses at low temperatures (e.g., Xf =480 nm for the parent compound). The quantum yield (@f) at -196 OC ranges from 0.15 to 0.9. A transient ( A, , , E 450 nm, 7~ I 5 ps), detectable at room temperature only on excitation of a sensitizer (e.g., xanthone in acetonitrile), is assigned to the lowest DHA triplet. In viscous media, where @ p v is strongly retarded, the triplet is observable on direct excitation with a lifetime of less than 10 ps even at -196 OC. The increase of 'Pf and the reverse effect for @D-V with decreasing temperature indicates competition of these processes due to an activation barrier (C5 kcal/mol) along the IDHA* -VHF pathway. Characteristic features of the ground-state and first excited singlet energy surfaces are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.