Glucagon, the counter-regulatory hormone to insulin, is secreted from pancreatic ␣ cells in response to low blood glucose. To examine the role of glucagon in glucose homeostasis, mice were generated with a null mutation of the glucagon receptor (Gcgr ؊/؊ ). These mice display lower blood glucose levels throughout the day and improved glucose tolerance but similar insulin levels compared with control animals. Gcgr ؊/؊ mice displayed supraphysiological glucagon levels associated with postnatal enlargement of the pancreas and hyperplasia of islets due predominantly to ␣ cell, and to a lesser extent, ␦ cell proliferation. In addition, increased proglucagon expression and processing resulted in increased pancreatic glucogen-like peptide 1 (GLP-1) (1-37) and GLP-1 amide (1-36 amide) content and a 3-to 10-fold increase in circulating GLP-1 amide. Gcgr ؊/؊ mice also displayed reduced adiposity and leptin levels but normal body weight, food intake, and energy expenditure. These data indicate that glucagon is essential for maintenance of normal glycemia and postnatal regulation of islet and ␣ and ␦ cell numbers. Furthermore, the lean phenotype of Gcgr ؊/؊ mice suggests glucagon action may be involved in the regulation of whole body composition.
The mobilization of free fatty acids from adipose triacylglycerol (TG) stores requires the activities of triacylglycerol lipases. In this study, we demonstrate that adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are the major enzymes contributing to TG breakdown in in vitro assays and in organ cultures of murine white adipose tissue (WAT). To differentiate between ATGL-and HSL-specific activities in cytosolic preparations of WAT and to determine the relative contribution of these TG hydrolases to the lipolytic catabolism of fat, mutant mouse models lacking ATGL or HSL and a mono-specific, small molecule inhibitor for HSL (76-0079) were used. We show that 76-0079 had no effect on TG catabolism in HSL-deficient WAT but, in contrast, essentially abolished free fatty acid mobilization in ATGL-deficient fat. CGI-58, a recently identified coactivator of ATGL, stimulates TG hydrolase activity in wild-type and HSL-deficient WAT but not in ATGL-deficient WAT, suggesting that ATGL is the sole target for CGI-58-mediated activation of adipose lipolysis. Together, ATGL and HSL are responsible for more than 95% of the TG hydrolase activity present in murine WAT. Additional known or unknown lipases appear to play only a quantitatively minor role in fat cell lipolysis. Fatty acids deposited as triacylglycerol (TG)3 in white adipose tissue (WAT) represent the primary energy store in animals. In periods of increased energy demand, TG is hydrolyzed, and free fatty acids (FFA) are released into the circulation. The hydrolysis of TG is catalyzed by adipose tissue lipases in sequential steps leading to the formation of FFA and glycerol. The first step within the hydrolysis cascade generating FFA and diacylglycerol (DG) is rate-limiting for subsequent reactions.
During pregnancy, the mother adapts to meet the calcium demands of the fetus. The effect of this adaptation on the maternal skeleton is not fully understood. Our objectives were to evaluate changes in bone mineral density (BMD) and bone turnover during pregnancy. We studied 16 women longitudinally, with baseline measurements before pregnancy; then at 16, 26, and 36 weeks of pregnancy; and postpartum. We measured total-body BMD and biochemical markers of bone resorption (urinary pyridinium crosslinks and telopeptides of type I collagen) and bone formation (serum bone alkaline phosphatase, propeptides of type I procollagen [PINP] and osteocalcin). We also measured parathyroid hormone (PTH), insulin-like growth factor I (IGF-I), and human placental lactogen. Postpartum, BMD increased in the arms (2.8%, P F 0.01) and legs (1.9%, P F 0.01) but decreased in the pelvis (؊3.2%, P F0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.