A specific covalently linked dimeric species of insulin high molecular weight products (HMWPs), formed during prolonged incubation of a neutral pharmaceutical formulation of human insulin, were characterized in terms of tertiary structure, self-association, biological activity, and fibrillation properties. The dimer was formed by a covalent link between A21Asn and B29Lys. It was analyzed using static and dynamic light scattering and small-angle X-ray scattering to evaluate its self-association behavior. The tertiary structure was obtained using nuclear magnetic resonance and X-ray crystallography. The biological activity of HMWP was determined using 2 in vitro assays, and its influence on fibrillation was investigated using Thioflavin T assays. The dimer's tertiary structure was nearly identical to that of the noncovalent insulin dimer, and it was able to form hexamers in the presence of zinc. The dimer exhibited reduced propensity for self-association in the absence of zinc but significantly postponed the onset of fibrillation in insulin formulations. Consistent with its dimeric state, the tested species of HMWP showed little to no biological activity in the used assays. This study is the first detailed characterization of a specific type of human insulin HMWP formed during storage of a marketed pharmaceutical formulation. These results indicate that this specific type of HMWP is unlikely to antagonize the physical stability of the formulation, as HMWP retained a tertiary structure similar to the noncovalent dimer and participated in hexamer assembly in the presence of zinc. In addition, increasing amounts of HMWP reduce the rate of insulin fibrillation.
HMWP formed in formulation of human insulin at pH 7.4 with zinc and m-cresol consists primarily of covalent dimers linked via A21Asn and B29Lys. Insulin formulation properties determine the amount and identity of formed HMWP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.