Pacific salmon employ a semelparous reproductive strategy where sexual maturation is followed by rapid senescence and death. Cortisol overproduction has been implicated as the central physiologic event responsible for the post-spawning demise of these fish. Cortisol homeostasis is regulated through the action of hormones of the hypothalamus-pituitary-interrenal (HPI) axis. These include corticotropin-releasing factor (CRF) and urotensin-I (UI). In the present study, masu salmon (Oncorhynchus masou) were assayed for changes in the levels CRF-I and UI mRNA transcripts by quantitative real-time PCR (qRT-PCR). These results were compared to plasma cortisol levels in juvenile, adult, and spawning masu salmon to identify specific regulatory factors that appear to be functionally associated with changes in cortisol levels. Intramuscular implantation of GnRH analog (GnRHa) capsules was also used to determine whether GnRH influences stress hormone levels. In both male and female masu salmon, spawning fish experienced a 5-7 fold increase in plasma cortisol levels relative to juvenile non-spawning salmon. Changes in CRF-I mRNA levels were characterized by 1-2 distinctive short-term surges in adult masu salmon. Conversely, seasonal changes in UI mRNA levels displayed broad and sustained increases during the pre-spawning and spawning periods. The increases in UI mRNA levels were positively correlated (R 2 = 0.21 male and 0.26 female, p<0.0001) with levels of plasma cortisol in the pre-spawning and spawning periods. Despite the importance of GnRH in sexual maturation and reproduction, the administration of GnRHa to test animals failed to produce broad changes in CRF-I, UI or plasma cortisol levels. These findings suggest a more direct role for UI than for CRF-I in the regulation of cortisol levels in spawning Pacific salmon.
Accurate microscopic identification of human spermatozoa is important in sexual assault cases. We have compared the results of examinations with (1) a fluorescent microscopy method, SPERM HY-LITER™, and (2) Baecchi's method for identification of human spermatozoa. In 35 artificial, forensic type samples, spermatozoa were identified in 45.7% with SPERM HY-LITER™ in Copenhagen, in 54.3% in the laboratory of the manufacturer of SPERM HY-LITER™, and 40.0% of the samples with Baecchi's staining method. When differences occurred between the two methods, it was significantly more often that SPERM HY-LITER™ detected spermatozoa when Baecchi's method did not (ts=6.567, df=1, P=0.048). This trend was also seen in selected compromised or degraded samples and in selected adjudicative samples. The reactions with spermatozoa from dog, horse, pig and bull were negative with SPERM HY-LITER™, whereas Baecchi's method was non-selective. Data from forensic casework samples in Copenhagen from two years (2008 and 2009) are presented. The samples from 2008 were investigated using Baecchi's method, while those from 2009 were investigated using SPERM HY-LITER™. The frequencies of positive results were similar between the two methods for the two years (27.9% and 32.1% respectively). Analysis of acid phosphatase (ACP) activity for the positive results obtained for these two years does not support the use of a negative ACP result as a prescreen for microscopic analysis for spermatozoa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.