The main difference between high entropy alloys and conventional alloys is the solid solution strengthening effect, which shifts from a single element to a multi-element matrix. Little is known about the effectiveness of this effect at high temperatures. Face-centered cubic, equiatomic, and single crystalline high entropy alloy CrMnFeCoNi was pre-alloyed by arc-melting and cast as a single crystal using the Bridgman process. Mechanical characterization by creep testing were performed at temperatures of 700, 980, 1100, and 1200 °C at different loads under vacuum and compared to single-crystalline pure nickel. The results allow a direct assessment of the influence of the chemical composition without any disturbance by grain boundary sliding or diffusion. The results indicate different behaviors of single crystalline pure nickel and CrMnFeCoNi. At 700 °C CrMnFeCoNi is more creep-resistant than Ni, but at 980 °C both alloys show a nearly similar creep strength. Above 980 °C the creep behavior is identical and the solid solution strengthening effect of the CrMnFeCoNi alloy disappears.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.