Introduction Although epidemiologic evidence points to cardioprotective activity of red wine, the mechanistic basis for antithrombotic activity has not been established. Quercetin and related flavonoids are present in high concentrations in red but not white wine. Quercetin-glycosides were recently shown to prevent thrombosis in animal models through the inhibition of extracellular protein disulfide isomerase (PDI). We evaluated whether red or white wine inhibited PDI activity in vitro. Methods Quercetin levels in red and white wines were measured by HPLC analysis. Inhibition of PDI activity by red and white wines was assessed by an insulin reduction turbidity assay at various concentrations of wine. PDI inhibition was confirmed using a reduced peptide that contained a disulfide containing peptide as a substrate. The inhibition of PDI related thiol isomerases ERp5 and ERp57 was also assessed. Results We observed a dose-dependent decrease of PDI activity for a variety of red but not white wines. Red wine diluted to 3% final concentration resulted in over 80% inhibition of PDI activity by insulin reductase assay for all varieties tested. This inhibition was also observed in the peptide based assay. Red grape juice yielded similar results but ethanol alone did not affect PDI activity. Interestingly, red wine also inhibited the PDI related thiol isomerases ERp5 and ERp57, albeit to a lesser degree than PDI. Conclusions PDI activity is inhibited by red wine and grape juice, identifying a potentially novel mechanism underlying the cardiovascular benefits attributed to wine consumption.
The thiol isomerase, protein disulfide isomerase (PDI), plays important intracellular roles during protein folding, maintaining cellular function and viability. Recent studies suggest novel roles for extracellular cell surface PDI in enhancing cellular activation and promoting their function. Moreover, a number of food-derived substances have been shown to regulate cellular PDI activity and alter disease progression. We hypothesized that PDI may have similar roles during mast cell-mediated allergic responses and examined its effects on IgE-induced mast cell activity during cell culture and food allergy. Mast cells were activated via IgE and antigen and the effects of PDI inhibition on mast cell activation were assessed. The effects of PDI blockade in vivo were examined by treating mice with the irreversible PDI inhibitor, PACMA-31, in an ovalbumin-induced model of food allergy. The role of dietary PDI modulators was investigated using various dietary compounds including curcumin and quercetin-3-rutinoside (rutin). PDI expression was observed on resting mast cell surfaces, intracellularly, and in the intestines of allergic mice. Furthermore, enhanced secretion of extracellular PDI was observed on mast cell membranes during IgE and antigen activation. Insulin turbidimetric assays demonstrated that curcumin is a potent PDI inhibitor and pre-treatment of mast cells with curcumin or established PDI inhibitors such as bacitracin, rutin or PACMA-31, resulted in the suppression of IgE-mediated activation and the secretion of various cytokines. This was accompanied by decreased mast cell proliferation, FcεRI expression, and mast cell degranulation. Similarly, treatment of allergic BALB/c mice with PACMA-31 attenuated the development of food allergy resulting in decreased allergic diarrhea, mast cell activation, and fewer intestinal mast cells. The production of TH2-specific cytokines was also suppressed. Our observations suggest that PDI catalytic activity is essential in the regulation of mast cell activation, and that its blockade may benefit patients with allergic inflammation.
New language technologies are coming, thanks to the huge and competing private investment fuelling rapid progress; we can either understand and foresee their effects, or be taken by surprise and spend our time trying to catch up. This report scketches out some transformative new technologies that are likely to fundamentally change our use of language. Some of these may feel unrealistically futuristic or far-fetched, but a central purpose of this report - and the wider LITHME network - is to illustrate that these are mostly just the logical development and maturation of technologies currently in prototype. But will everyone benefit from all these shiny new gadgets? Throughout this report we emphasise a range of groups who will be disadvantaged and issues of inequality. Important issues of security and privacy will accompany new language technologies. A further caution is to re-emphasise the current limitations of AI. Looking ahead, we see many intriguing opportunities and new capabilities, but a range of other uncertainties and inequalities. New devices will enable new ways to talk, to translate, to remember, and to learn. But advances in technology will reproduce existing inequalities among those who cannot afford these devices, among the world’s smaller languages, and especially for sign language. Debates over privacy and security will flare and crackle with every new immersive gadget. We will move together into this curious new world with a mix of excitement and apprehension - reacting, debating, sharing and disagreeing as we always do. Plug in, as the human-machine era dawns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.