BackgroundRenewable lignocellulosic biomass is an advantageous resource for the production of second generation biofuels and other biorefinery products. In Middle Europe, wheat straw is one of the most abundant low-cost sources of lignocellulosic biomass. For its efficient use, an efficient mix of cellulases and hemicellulases is required. In this paper, we investigated how cellulase production by T. reesei on wheat straw compares to that on lactose, the only soluble and also cheap inducing carbon source for enzyme production.ResultsWe have examined and compared the transcriptome of T. reesei growing on wheat straw and lactose as carbon sources under otherwise similar conditions. Gene expression on wheat straw exceeded that on lactose, and 1619 genes were found to be only induced on wheat straw but not on lactose. They comprised 30% of the CAZome, but were also enriched in genes associated with phospholipid metabolism, DNA synthesis and repair, iron homeostatis and autophagy. Two thirds of the CAZome was expressed both on wheat straw as well as on lactose, but 60% of it at least >2-fold higher on the former. Major wheat straw specific genes comprised xylanases, chitinases and mannosidases. Interestingly, the latter two CAZyme families were significantly higher expressed in a strain in which xyr1 encoding the major regulator of cellulase and hemicellulase biosynthesis is non-functional.ConclusionsOur data reveal several major differences in the transcriptome between wheat straw and lactose which may be related to the higher enzyme formation on the former and their further investigation could lead to the development of methods for increasing enzyme production on lactose.
Background: The hypercellulolytic mutant Hypocrea jecorina (anamorph Trichoderma reesei) RUT C30 is the H. jecorina strain most frequently used for cellulase fermentations and has also often been employed for basic research on cellulase regulation. This strain has been reported to contain a truncated carbon catabolite repressor gene cre1 and is consequently carbon catabolite derepressed. To date this and an additional frame-shift mutation in the glycoprotein-processingglucosidase II encoding gene are the only known genetic differences in strain RUT C30.
BackgroundHydrophobins are proteins containing eight conserved cysteine residues that occur uniquely in mycelial fungi. Their main function is to confer hydrophobicity to fungal surfaces in contact with air or during attachment of hyphae to hydrophobic surfaces of hosts, symbiotic partners or themselves resulting in morphogenetic signals. Based on their hydropathy patterns and solubility characteristics, hydrophobins are divided into two classes (I and II), the latter being found only in ascomycetes.ResultsWe have investigated the mechanisms driving the evolution of the class II hydrophobins in nine species of the mycoparasitic ascomycetous genus Trichoderma/Hypocrea, using three draft sequenced genomes (H. jecorina = T. reesei, H. atroviridis = T. atroviride; H. virens = T. virens) an additional 14,000 ESTs from six other Trichoderma spp. (T. asperellum, H. lixii = T. harzianum, T. aggressivum var. europeae, T. longibrachiatum, T. cf. viride). The former three contained six, ten and nine members, respectively. Ten is the highest number found in any ascomycete so far. All the hydrophobins we examined had the conserved four beta-strands/one helix structure, which is stabilized by four disulfide bonds. In addition, a small number of these hydrophobins (HFBs)contained an extended N-terminus rich in either proline and aspartate, or glycine-asparagine. Phylogenetic analysis reveals a mosaic of terminal clades containing duplicated genes and shows only three reasonably supported clades. Calculation of the ratio of differences in synonymous vs. non-synonymous nucleotide substitutions provides evidence for strong purifying selection (KS/Ka >> 1). A genome database search for class II HFBs from other ascomycetes retrieved a much smaller number of hydrophobins (2–4) from each species, and most were from Sordariomycetes. A combined phylogeny of these sequences with those of Trichoderma showed that the Trichoderma HFBs mostly formed their own clades, whereas those of other Sordariomycetes occurred in shared clades.ConclusionOur study shows that the genus Trichoderma/Hypocrea has a proliferated arsenal of class II hydrophobins which arose by birth-and-death evolution followed by purifying selection.
Lactose (1,4-O-b-D-galactopyranosyl-D-glucose) is a soluble and economic carbon source for the industrial production of cellulases or recombinant proteins by Hypocrea jecorina (anamorph Trichoderma reesei). The mechanism by which lactose induces cellulase formation is not understood. Recent data showed that the galactokinase step is essential for cellulase induction by lactose, but growth on D-galactose alone does not induce cellulases. Consequently, the hypothesis was tested that D-galactose may be an inducer only at a low growth rate, which is typically observed when growing on lactose. Carbon-limited chemostat cultivations of H. jecorina were therefore performed at different dilution rates with D-galactose, lactose, galactitol and D-glucose. Cellulase gene expression was monitored by using a strain carrying a fusion between the cbh2 (encoding cellobiohydrolase 2, Cel6A) promoter region and the Aspergillus niger glucose oxidase gene and by identification of the two major cellobiohydrolases Cel7A and Cel6A. The results show that D-galactose indeed induces cbh2 gene transcription and leads to Cel7A and Cel6A accumulation at a low (D=0?015 h "1 ) but not at higher dilution rates. At the same dilution rate, growth on D-glucose did not lead to cbh2 promoter activation or Cel6A formation but a basal level, lower than that observed on D-galactose, was detected for the carbon-catabolite-derepressible Cel7A. Lactose induced significantly higher cellulase levels at 0?015 h "1 than D-galactose and induced cellulases even at growth rates up to 0?042 h "1. Results of chemostats with an equimolar mixture of D-galactose and D-glucose essentially mimicked the behaviour on D-galactose alone, whereas an equimolar mixture of D-galactose and galactitol, the first intermediate of a recently described second pathway of D-galactose catabolism, led to cellulase induction at D=0?030 h "1 . It is concluded that D-galactose indeed induces cellulases at low growth rate and that the operation of the alternative pathway further increases this induction. However, under those conditions lactose is still a superior inducer for which the mechanism remains to be clarified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.