The discovery of obligatory intracellular bacteria of the genus Wolbachia in filariae infecting humans led to the use of antibiotics as a potent treatment option. Mansonella perstans is the cause of the second most prevalent filariasis in Gabon, but so far reports on the presence of Wolbachia in this nematode have been inconsistent. We report on the presence of Wolbachia in M. perstans in patients from Gabon, which we identified using polymerase chain reaction (PCR) with primer sets specific for 16S rDNA and ftsZ. Sequence analysis revealed a single consensus sequence, which could be phylogenetically assigned to Wolbachia of the supergroup F. Wolbachia could only be identified in 5 of 14 or 7 of 14 cases, depending on the investigated gene; detection of Wolbachia was associated with higher-level filaremia. Before generalizing the use of antibiotics for mansonellosis, further clarification of the obligatory nature of the endosymbiosis in this nematode is needed.
Background Klebsiella spp. are opportunistic pathogens which can cause severe infections, are often multi-drug resistant and are a common cause of hospital-acquired infections. Multiple new Klebsiella species have recently been described, yet their clinical impact and antibiotic resistance profiles are largely unknown. We aimed to explore Klebsiella group- and species-specific clinical impact, antimicrobial resistance (AMR) and virulence. Methods We analysed whole-genome sequence data of a diverse selection of Klebsiella spp. isolates and identified resistance and virulence factors. Using the genomes of 3594 Klebsiella isolates, we predicted the masses of 56 ribosomal subunit proteins and identified species-specific marker masses. We then re-analysed over 22,000 Matrix-Assisted Laser Desorption Ionization - Time Of Flight (MALDI-TOF) mass spectra routinely acquired at eight healthcare institutions in four countries looking for these species-specific markers. Analyses of clinical and microbiological endpoints from a subset of 957 patients with infections from Klebsiella species were performed using generalized linear mixed-effects models. Results Our comparative genomic analysis shows group- and species-specific trends in accessory genome composition. With the identified species-specific marker masses, eight Klebsiella species can be distinguished using MALDI-TOF MS. We identified K. pneumoniae (71.2%; n = 12,523), K. quasipneumoniae (3.3%; n = 575), K. variicola (9.8%; n = 1717), “K. quasivariicola” (0.3%; n = 52), K. oxytoca (8.2%; n = 1445), K. michiganensis (4.8%; n = 836), K. grimontii (2.4%; n = 425) and K. huaxensis (0.1%; n = 12). Isolates belonging to the K. oxytoca group, which includes the species K. oxytoca, K. michiganensis and K. grimontii, were less often resistant to 4th-generation cephalosporins than isolates of the K. pneumoniae group, which includes the species K. pneumoniae, K. quasipneumoniae, K. variicola and “K. quasivariicola” (odds ratio = 0.17, p < 0.001, 95% confidence interval [0.09,0.28]). Within the K. pneumoniae group, isolates identified as K. pneumoniae were more often resistant to 4th-generation cephalosporins than K. variicola isolates (odds ratio = 2.61, p = 0.003, 95% confidence interval [1.38,5.06]). K. oxytoca group isolates were found to be more likely associated with invasive infection to primary sterile sites than K. pneumoniae group isolates (odds ratio = 2.39, p = 0.0044, 95% confidence interval [1.05,5.53]). Conclusions Currently misdiagnosed Klebsiella spp. can be distinguished using a ribosomal marker-based approach for MALDI-TOF MS. Klebsiella groups and species differed in AMR profiles, and in their association with invasive infection, highlighting the importance for species identification to enable effective treatment options.
BackgroundEmergence of colistin resistance has been related to increased use in clinical settings, following global spread of carbapenem-resistant Gram-negative bacteria. Use of colistin in animal production may constitute a further source of spread of resistant strains to humans. We sought to determine risk factors for human colonisation or infection with colistin-resistant Escherichia coli and Klebsiella pneumoniae in a setting where colistin is mainly used for animal production. Methods: This retrospective matched case–control study was performed during a 5-year period at two university-affiliated hospitals in Basel, Switzerland. Conditional univariable logistic regression was used to calculate odds ratios (OR) for colistin resistance. All variables found to be significant in univariable analyses were included in the conditional multivariable regression model using stepwise forward and backward selection. Results: Forty-two cases (33 with colistin-resistant E. coli, 9 with colistin-resistant K. pneumoniae) and 126 matched controls were identified. Baseline characteristics, comorbidities, prior exposure to antibiotics and healthcare settings did not differ between cases and controls, except for prior exposure to carbapenems, hospitalisation and stay abroad during the prior 3 months. In multivariable analyses, only prior exposure to carbapenems remained associated with colistin resistance (OR: 5.00; 95% confidence interval (95% CI): 1.19–20.92; p = 0.028). Conclusion: In a low-endemicity setting for carbapenem resistance, prior exposure to carbapenems was the only risk factor for colonisation or infection with colistin-resistant E. coli or K. pneumoniae. Prior exposure to colistin was not significantly associated with detection of colistin resistance, which mainly occurred in the absence of concurrent carbapenem resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.