It is a fact that electric vehicles (EVs) are beneficial for climate protection. However, the current challenge is to decide on whether to reuse an EV battery or to recycle it after its first use. This paper theoretically investigates these areas i.e., recycle and reuse. It was found that there are several commercially used recycling processes and also some are under research to regain maximum possible materials and quantity. The concept of reusing (second life) of the battery is promising because, at the end of the first life, batteries from EVs can be used in several applications such as storing energy generated from renewable sources to support the government grid. However, the cost and life-cycle analysis (LCA) demonstrated that there are several aspects involved in battery reuse applications. Henceforth, one LCA generalised method cannot provide an optimal approach for all cases. It is important to have a detailed study on each of the battery reusing applications. Until then, it is safe to say that reusing the battery is a good option as it would give some time to recycling companies to develop cost and energy-efficient methods.
The degradation of lithium-ion cells is an important aspect, not only for quality management, but also for the customer of the application like, e.g., scooters or electric vehicles. During the lifetime of the system, the overall health on the battery plays a key role in its depreciation. Therefore, it is necessary to monitor the health of the battery during operation, i.e., cycle life, but also during stationary conditions, i.e., calendar aging. In this work, the degradation due to calendar aging is analyzed for six different cell chemistries in terms of capacity degradation and impedance increase and their performance are being compared. In a new proposed metric, the relative deviations between various cells with the exact identical aging history are being analyzed for their degradation effects and their differences, which stands out in comparison to similar research. The capacity loss was found to be most drastic at 60 °C and at higher storage voltages, even for titanate-oxide cells. LiNiMnCoO2 (NMC), LiNiCoAlO2 (NCA) and Li2TiO3 (LTO) cells at 60 °C showed the most drastic capacity decrease. NMC and NCA cells at 60 °C and highest storage voltage did not show any open circuit voltage, as their current interrupt mechanism triggered. The effect of aging shows no uniform impact on the changes in the capacity variance when comparing different aging conditions, with respect to the evaluated standard deviation for all cells. The focus of this work was on the calendar aging effect and may be supplemented in a second study for cyclic aging.
In the near future, electric powered vehicles will represent a major part of the road traffic. Accordingly, there will be a natural increase of accidents involving electric vehicles. There are not many cases of such accidents yet and therefore the experience and correct handling are still partially open points for the involved parties, such as the rescue services for example. The aim of this work is to provide a complete overview of the accident handling sequence in Germany, starting with the damaged vehicle on site and moving on to the risks and challenges for the stakeholders, such as transport and recycling companies. Arising from the developed overview, a handling recommendation for yet undiscussed points is given. Especially, different extinguishing and deactivation methods are compared and discussed. Due to a lack of a common live-feed from battery data on site, other criteria have to be taken into account to assess the state of the battery. The wrecked vehicle—including the high voltage system—needs to be in a definite safe state at the handover to a towing service. Depending on the case, different options for securing the vehicle will be considered in this work.
Nowadays, lithium ion batteries have found their place in a various field of portable applications. With the upcoming of electrically propelled vehicles, it is mandatory to guarantee a safe and predictable behavior during the whole lifetime and not only after manufacturing during performance tests. To gain a general overview of the abuse behavior, research on the topic of abusive tests on calendar-aged cells is being investigated, split up depending on the electrode composition and lined up against each other. It can be shown, that almost all abuse experiments have been performed with external heating tests in the past, still leaving research gaps that need to be filled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.