We present a method for using standard techniques from satisfiability checking to automatically verify and discover theorems in an area of economic theory known as ranking sets of objects. The key question in this area, which has important applications in social choice theory and decision making under uncertainty, is how to extend an agent's preferences over a number of objects to a preference relation over nonempty sets of such objects. Certain combinations of seemingly natural principles for this kind of preference extension can result in logical inconsistencies, which has led to a number of important impossibility theorems. We first prove a general result that shows that for a wide range of such principles, characterised by their syntactic form when expressed in a many-sorted first-order logic, any impossibility exhibited at a fixed (small) domain size will necessarily extend to the general case. We then show how to formulate candidates for impossibility theorems at a fixed domain size in propositional logic, which in turn enables us to automatically search for (general) impossibility theorems using a SAT solver. When applied to a space of 20 principles for preference extension familiar from the literature, this method yields a total of 84 impossibility theorems, including both known and nontrivial new results.
Two important requirements when aggregating the preferences of multiple agents are that the outcome should be economically efficient and the aggregation mechanism should not be manipulable. In this paper, we provide a computer-aided proof of a sweeping impossibility using these two conditions for randomized aggregation mechanisms. More precisely, we show that every efficient aggregation mechanism can be manipulated for all expected utility representations of the agents' preferences. This settles an open problem and strengthens a number of existing theorems, including statements that were shown within the special domain of assignment. Our proof is obtained by formulating the claim as a satisfiability problem over predicates from real-valued arithmetic, which is then checked using an SMT (satisfiability modulo theories) solver. In order to verify the correctness of the result, a minimal unsatisfiable set of constraints returned by the SMT solver was translated back into a proof in higher-order logic, which was automatically verified by an interactive theorem prover. To the best of our knowledge, this is the first application of SMT solvers in computational social choice.1 Alternative proofs for this important theorem were provided by Duggan [1996], Nandeibam [1997], andTanaka [2003]. R 1
A promising direction in computational social choice is to address research problems using computer-aided proving techniques. In particular with SAT solvers, this approach has been shown to be viable not only for proving classic impossibility theorems such as Arrow's Theorem but also for finding new impossibilities in the context of preference extensions. In this paper, we demonstrate that these computer-aided techniques can also be applied to improve our understanding of strategyproof irresolute social choice functions. These functions, however, require a more evolved encoding as otherwise the search space rapidly becomes much too large. Our contribution is two-fold: We present an efficient encoding for translating such problems to SAT and leverage this encoding to prove new results about strategyproofness with respect to Kelly's and Fishburn's preference extensions. For example, we show that no Pareto-optimal majoritarian social choice function satisfies Fishburn-strategyproofness. Furthermore, we explain how human-readable proofs of such results can be extracted from minimal unsatisfiable cores of the corresponding SAT formulas.
Voting rules allow multiple agents to aggregate their preferences in order to reach joint decisions. Perhaps one of the most important desirable properties in this context is Condorcet-consistency, which requires that a voting rule should return an alternative that is preferred to any other alternative by some majority of voters. Another desirable property is participation, which requires that no voter should be worse off by joining an electorate. A seminal result in social choice theory by Moulin [28] has shown that Condorcetconsistency and participation are incompatible whenever there are at least 4 alternatives and 25 voters. We leverage SAT solving to obtain an elegant human-readable proof of Moulin's result that requires only 12 voters. Moreover, the SAT solver is able to construct a Condorcet-consistent voting rule that satisfies participation as well as a number of other desirable properties for up to 11 voters, proving the optimality of the above bound. We also obtain tight results for set-valued and probabilistic voting rules, which complement and significantly improve existing theorems.
Many hardness results in computational social choice make use of the fact that every directed graph may be induced as the pairwise majority relation of some preference profile. However, this fact requires a number of voters that is almost linear in the number of alternatives. It is therefore unclear whether these results remain intact when the number of voters is bounded, as is, for example, typically the case in search engine aggregation settings. In this paper, we provide a systematic study of majority digraphs for a constant number of voters resulting in analytical, experimental, and complexity-theoretic insights. First, we characterize the set of digraphs that can be induced by two and three voters, respectively, and give sufficient conditions for larger numbers of voters. Second, we present a surprisingly efficient implementation via SAT solving for computing the minimal number of voters that is required to induce a given digraph and experimentally evaluate how many voters are required to induce the majority digraphs of real-world and generated preference profiles. Finally, we leverage our sufficient conditions to show that the winner determination problem of various well-known voting rules remains hard even when there is only a small constant number of voters. In particular, we show that Kemeny's rule is hard to evaluate for 7 voters, while previous methods could only establish such a result for constant even numbers of voters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.