Background-Therapeutic hypothermia can improve survival after cardiopulmonary resuscitation (CPR). Coenzyme Q10 (CoQ10) has shown a protective effect in neurodegenerative disorders. We investigated whether combining mild hypothermia with CoQ10 after out-of-hospital cardiac arrest provides additional benefit. Methods and Results-Forty-nine patients were randomly assigned to either hypothermia plus CoQ10 or hypothermia plus placebo after CPR. Hypothermia with a core temperature of 35°C was instituted for 24 hours. Liquid CoQ10 250 mg followed by 150 mg TID for 5 days or placebo was administered through nasogastric tube. Age, sex, premorbidity, cause of arrest, conditions of CPR, and degree of hypoxia were similar in both groups; no side effects of CoQ10 were identified. Three-month survival in the CoQ10 group was 68% (17 of 25) and 29% (7 of 24) in the placebo group (Pϭ0.0413). Nine CoQ10 patients versus 5 placebo patients survived with a Glasgow Outcome Scale of 4 or 5. Mean serum S100 protein 24 hours after CPR was significantly lower in the CoQ10 group (0.47 versus 3.5 ng/mL).
Conclusions-Combining
Purpose of Review
Cardiac resynchronization therapy (CRT) represents a well-established and effective non-pharmaceutical heart failure (HF) treatment in selected patients. Still, a significant number of patients remain CRT non-responders. An optimal placement of the left ventricular (LV) lead appears crucial for the intended hemodynamic and hence clinical improvement. A well-localized target area and tools that help to achieve successful lead implantation seem to be of utmost importance to reach an optimal CRT effect.
Recent Findings
Recent studies suggest previous multimodal imaging (CT/cMRI/ECG torso) to guide intraprocedural LV lead placement. Relevant benefit compared to empirical lead optimization is still a matter of debate. Technical improvements in leads and algorithms (e.g., multipoint pacing (MPP), adaptive algorithms) promise higher procedural success. Recently emerging alternatives for ventricular synchronization such as conduction system pacing (CSP), LV endocardial pacing, or leadless pacing challenge classical biventricular pacing.
Summary
This article reviews current strategies for a successful planning, implementation, and validation of the optimal CRT implantation. Pre-implant imaging modalities offer promising assistance for complex cases; empirical lead positioning and intraoperative testing remain the cornerstone in most cases and ensure a successful CRT effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.