The (1+λ) EA with mutation probability c/n, where c > 0 is an arbitrary constant, is studied for the classical OneMax function. Its expected optimization time is analyzed exactly (up to lower order terms) as a function of c and λ. It turns out that 1/n is the only optimal mutation probability if λ = o(ln n ln ln n/ln ln ln n), which is the cut-off point for linear speed-up. However, if λ is above this cut-off point then the standard mutation probability 1/n is no longer the only optimal choice. Instead, the expected number of generations is (up to lower order terms) independent of c, irrespectively of it being less than 1 or greater.The theoretical results are obtained by a careful study of order statistics of the binomial distribution and variable drift theorems for upper and lower bounds. Experimental supplements shed light on the optimal mutation probability for small problem sizes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.