Background Subjective Memory Complaints (SMC) in elderly people due to preclinical Alzheimer’s Disease may be associated with dysregulation of the Kynurenine Pathway (KP), with an increase in neurotoxic metabolites that affect cognition. Golf is a challenging sport with high demands on motor, sensory, and cognitive abilities, which might bear the potential to attenuate the pathological changes of preclinical AD. This trial investigated the feasibility of learning to play golf for elderly with cognitive problems and its effects on cognitive functions and the KP. Methods In a 22-week single-blinded randomized controlled trial, elderly people with SMC were allocated to the golf (n = 25, 180 min training/week) or control group (n = 21). Primary outcomes were feasibility (golf exam, adherence, adverse events) and general cognitive function (Alzheimer’s Disease Assessment Scale). Secondary outcomes include specific cognitive functions (Response Inhibition, Corsi Block Tapping Test, Trail Making Test), KP metabolites and physical performance (6-Minute-Walk-Test). Baseline-adjusted Analysis-of-Covariance was conducted for each outcome. Results 42 participants were analyzed. All participants that underwent the golf exam after the intervention passed it (20/23). Attendance rate of the golf intervention was 75 %. No adverse events or drop-outs related to the intervention occurred. A significant time*group interaction (p = 0.012, F = 7.050, Cohen’s d = 0.89) was found for correct responses on the Response Inhibition task, but not for ADAS-Cog. Moreover, a significant time*group interaction for Quinolinic acid to Tryptophan ratios (p = 0.022, F = 5.769, Cohen’s d = 0.84) in favor of the golf group was observed. An uncorrected negative correlation between attendance rate and delta Quinolinic acid to Kynurenic acid ratios in the golf group (p = 0.039, r=-0.443) was found as well. Conclusions The findings indicate that learning golf is feasible and safe for elderly people with cognitive problems. Preliminary results suggest positive effects on attention and the KP. To explore the whole potential of golfing and its effect on cognitive decline, a larger cohort should be studied over a longer period with higher cardiovascular demands. Trial registration The trial was retrospectively registered (2nd July 2018) at the German Clinical Trials Register (DRKS00014921).
Cardiorespiratory fitness was found to influence age-related changes of resting state brain network organization. However, the influence on dedifferentiated involvement of wider and more unspecialized brain regions during task completion is barely understood. We analyzed EEG data recorded during rest and different tasks (sensory, motor, cognitive) with dynamic mode decomposition, which accounts for topological characteristics as well as temporal dynamics of brain networks. As a main feature the dominant spatio-temporal EEG pattern was extracted in multiple frequency bands per participant. To deduce a pattern’s stability, we calculated its proportion of total variance among all activation patterns over time for each task. By comparing fit (N = 15) and less fit older adults (N = 16) characterized by their performance on a 6-min walking test, we found signs of a lower task specificity of the obtained network features for the less fit compared to the fit group. This was indicated by fewer significant differences between tasks in the theta and high beta frequency band in the less fit group. Repeated measures ANOVA revealed that a significantly lower proportion of total variance can be explained by the main pattern in high beta frequency range for the less fit compared to the fit group [F(1,29) = 12.572, p = .001, partial η2 = .300]. Our results indicate that the dedifferentiation in task-related brain activation is lower in fit compared to less fit older adults. Thus, our study supports the idea that cardiorespiratory fitness influences task-related brain network organization in different task domains.
Learning to play golf has high demands on attention and therefore may counteract age-related changes of functional brain networks. This cross-sectional study compared source connectivity in the Default Mode Network (DMN) between elderly golf novices and non-golfers. Four-minute resting-state electroencephalography (128 channels) from 22 elderly people (mean age 67 ± 4.3 years, 55% females) were recorded after completing a 22-week golf learning program or after having continued with normal life. Source connectivity was assessed after co-registration of EEG data with native MRI within pre-defined portions of the DMN in the beta band (14–25 Hz). Non-golfers had significantly higher source connectivity values in the anterior DMN compared to non-golfers. Exploratory correlation analyses did not indicate an association to cognitive performance in either group. Inverse correlations between a marker of external attention with source connectivity of the anterior DMN may suggest a trend in the golf group only, but have to be replicated in future studies. Clinical relevance of these findings remains to be elucidated, but the observed difference in the anterior DMN may provide a starting point to further investigate if and how learning golf may have an impact on physiological age-related cognitive changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.