Additive manufacturing (AM), often referred to as 3D printing, is a generic term describing the layered build-up of material in near net shape frequently attributed with a freedom of design that cannot be achieved otherwise. AM focuses basically on the fabrication of parts for different fields in complex high-tech applications. Examples include components for jet engines, turbines blades, and implants in the medical sector. This is often justified with tool cost savings, shorter lead-time, and overcoming the “design for manufacture” paradigm. On the other hand, a machining allowance is frequently required to counteract the inherent surface roughness and the widespread challenge of part distortion due to residual stresses. At this point, geometrical complexity and small batch sizes transform into strong cost drivers compared to conventional subtractive processing. In fact, these parts are simply hard-to-clamp and hard-to-probe. Moreover, iterative processing is frequently required due to remaining residual stresses in order to reach the target geometry; even the part envelope changes unintentionally. The current paper explores the novel approach of semiautonomous postprocessing of AM parts and components based on flexible clamping, geometry acquisition in the as-clamped position using cooperating laser profile sensors, and an adaptive milling path planning strategy to counteract unforeseen change of the part envelope.
The area-based three-dimensional optical inspection of workpiece geometries is the basis for quality control, maintenance tasks and many other typical applications in mechanical engineering and automation such as adaptive manufacturing. In the context of a cyber-physical approach for semi-autonomous post-processing of additively manufactured parts, this method provides the basis for an iterative manufacturing approach. Commercially available systems for optical inspections often rely on camera-based methods, which are, however, susceptible to reflections. This article describes an approach for developing an optical scan station that uses blue laser line scanners in combination with a Cartesian three-axis motion system and a turntable. The methodical procedure for an extrinsic calibration of the whole system is presented and the accuracy that could be achieved is evaluated.
Zusammenfassung
Wandlungsfähige Produktionssysteme werden oft im Kontext von Effizienzsteigerungen trotz sinkender Losgrößen und steigender Produktvariationen diskutiert. Aber auch derzeit noch manuell ausgeführte Prozesse können durch automatisierte Produktionssysteme realisiert werden, sofern sie sich an veränderliche Aufgaben und Randbedingungen autonom anpassen können. Nachgelagerte Prozesse bei der additiven Fertigung, wie das Reinigen der Bauteile, das Entfernen von Stützstrukturen und das Bearbeiten von Funktionsflächen sind hierfür Beispiele. Der vorliegende Artikel stellt ein Konzept der autonomen Nachbearbeitung additiv gefertigter Bauteile vor. Es werden die Integration von Lernverfahren in die Steuerung einer modularen, NC-roboterbasierten Fertigungszelle vorgestellt und zwei Aspekte des Lernens adressiert: Zum einen das initiale Training eines künstlichen neuronalen Netzes anhand von Simulationsdaten und zum anderen die Modifikation der Lernstrategie für das fortgesetzte, kontinuierliche Lernen im Betrieb des Roboters. Das Ziel des Lernens ist die Steigerung der Robotergenauigkeit. Hierzu wird eine, in die Roboterzelle integrierte, 3D-Laserlinienscanstation eingesetzt. Durch Analyse der erfassten Bauteilgeometrie werden unsichere Modellparameter des Roboters geschätzt und der Robotersteuerung mit dem Ziel einer genaueren Fertigung zugänglich gemacht.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.