Context: Plantar fasciitis is one of the most common foot injuries. Several mechanical treatment options, including shoe inserts, ankle-foot orthoses, tape, and shoes are used to relieve the symptoms of plantar fasciitis. Objectives: To investigate the effectiveness of mechanical treatment in the management of plantar fasciitis. Evidence Acquisition: The review was reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement. A systematic search was performed in PubMed, CINAHL, Embase, and Cochrane up to March 8, 2018. Two independent reviewers screened eligible articles and assessed risk of bias using the Cochrane Collaboration’s risk of bias tool. Evidence Synthesis: A total of 43 articles were included in the study, evaluating 2837 patients. Comparisons were made between no treatment and treatment with insoles, tape, ankle-foot orthoses including night splints and shoes. Tape, ankle-foot orthoses, and shoes were also compared with insoles. Follow-up ranged from 3 to 5 days to 12 months. Cointerventions were present in 26 studies. Conclusions: Mechanical treatment can be beneficial in relieving symptoms related to plantar fasciitis. Contoured full-length insoles are more effective in relieving symptoms related to plantar fasciitis than heel cups. Combining night splints or rocker shoes with insoles enhances improvement in pain relief and function compared with rocker shoes, night splints, or insoles alone. Taping is an effective short-term treatment. Future studies should aim to improve methodological quality using blinding, allocation concealment, avoid cointerventions, and use biomechanical measures of treatment effects.
Sit-to-stand is a fundamental activity of daily living, which becomes increasingly difficult with advancing age. Due to severe loss of leg strength old adults are required to change the way they rise from a chair and maintain stability. Here we examine whether old compared to young adults differently prioritize task-important performance variables and whether there are age-related differences in the use of available motor flexibility. We applied the uncontrolled manifold analysis to decompose trial-to-trial variability in joint kinematics into variability that stabilizes and destabilizes task-important performance variables. Comparing the amount of variability stabilizing and destabilizing task-important variables enabled us to identify the variable of primary importance for the task. We measured maximal isometric voluntary force of three muscle groups in the right leg. Independent of age and muscle strength, old and young adults similarly prioritized stability of the ground reaction force vector during sit-to-stand. Old compared to young adults employed greater motor flexibility, stabilizing ground reaction forces during sit-to-sand. We concluded that freeing those degrees of freedom that stabilize task-important variables is a strategy used by the aging neuromuscular system to compensate for strength deficits.
Healthy humans are able to place light and heavy objects in small and large target locations with remarkable accuracy. Here we examine how dexterity demand and physical demand affect flexibility in joint coordination and end-effector kinematics when healthy young adults perform an upper extremity reaching task. We manipulated dexterity demand by changing target size and physical demand by increasing external resistance to reaching. Uncontrolled manifold analysis was used to decompose variability in joint coordination patterns into variability stabilizing the end-effector and variability de-stabilizing the end-effector during reaching. Our results demonstrate a proportional increase in stabilizing and de-stabilizing variability without a change in the ratio of the two variability components as physical demands increase. We interpret this finding in the context of previous studies showing that sensorimotor noise increases with increasing physical demands. We propose that the larger de-stabilizing variability as a function of physical demand originated from larger sensorimotor noise in the neuromuscular system. The larger stabilizing variability with larger physical demands is a strategy employed by the neuromuscular system to counter the de-stabilizing variability so that performance stability is maintained. Our findings have practical implications for improving the effectiveness of movement therapy in a wide range of patient groups, maintaining upper extremity function in old adults, and for maximizing athletic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.