Cell division in the fission yeast Schizosaccharomyces pombe yields two equal-sized daughter cells. Medial fission is achieved by deposition of a primary septum flanked by two secondary septa within the dividing cell. During the final step of cell division, cell separation, the primary septum is hydrolyzed by an endo-(1,3)--glucanase, Eng1p. We reasoned that the cell wall material surrounding the septum, referred to here as the septum edging, also must be hydrolyzed before full separation of the daughter cells can occur. Because the septum edging contains (1,3)-␣-glucan, we investigated the cellular functions of the putative (1,3)-␣-glucanases Agn1p and Agn2p. Whereas agn2 deletion results in a defect in endolysis of the ascus wall, deletion of agn1 leads to clumped cells that remained attached to each other by septum-edging material. Purified Agn1p hydrolyzes (1,3)-␣-glucan predominantly into pentasaccharides, indicating an endo-catalytic mode of hydrolysis. Furthermore, we show that the transcription factors Sep1p and Ace2p regulate both eng1 and agn1 expression in a cell cycle-dependent manner. We propose that Agn1p acts in concert with Eng1p to achieve efficient cell separation, thereby exposing the secondary septa as the new ends of the daughter cells.
Inner-phase chemical reactions of guest molecules encapsulated in a macromolecular cavity give fundamental insight into the relative stabilization of transition states by the surrounding walls of the host, thereby modelling the situation of substrates in enzymatic binding pockets. Although in solution several examples of inner-phase reactions are known, the use of cucurbiturils as macrocyclic hosts and bicyclic azoalkanes as guests has now enabled a systematic mass spectrometric investigation of inner-phase reactions in the gas phase, where typically the supply of thermal energy results in dissociation of the supramolecular host-guest assembly. The results reveal a sensitive interplay in which attractive and repulsive van der Waals interactions between the differently sized hosts and guests need to be balanced with a constrictive binding to allow thermally activated chemical reactions to compete with dissociation. The results are important for the understanding of supramolecular reactivity and have implications for catalysis.
The metabolic impact of polyphenol-rich red wine and grape juice consumption in humans was studied using a metabolomics approach. Fifty-eight men and women participated in a placebo-controlled, double-crossover study in which they consumed during a period of 4 wk, either a polyphenol-rich 2:1 dry mix of red wine and red grape juice extracts (MIX) or only a grape juice extract (GJX). Twenty-four-hour urine samples were collected after each intervention. (1)H NMR spectroscopy was applied for global metabolite profiling, while GC-MS was used for focused profiling of urinary phenolic acids. Urine metabolic profiles after intake of both polyphenol-rich extracts were significantly differentiated from placebo using multilevel partial least squares discriminant analysis. A significant 35% increase in hippuric acid excretion (p<0.001) in urine was measured after the MIX consumption as) or only a red grape juice dry extract (GJX). 24-h urine samples were collected after each intervention. 1H-NMR spectroscopy was applied for global metabolite profiling, while gas chromatography-mass spectrometry (GC-MS) was used for focused profiling of urinary phenolic acids. Urine metabolic profiles after intake of both polyphenol-rich extracts were significantly differentiated from placebo using multilevel partial least squares discriminant analysis (ML-PLS-DA). A significant 35% increase in hippuric acid excretion (p<0.001) in urine was measured after the MIX consumption compared with placebo, whereas no change was found after GJX consumption. GC-MS-based metabolomics of urine allowed identification of 18 different phenolic acids, which were significantly elevated following intake of either extract. Syringic acid, 3- and 4-hydroxyhippuric acid and 4-hydroxymandelic acid were the strongest urinary markers for both extracts. MIX and GJX consumption had a slightly different effect on the excreted phenolic acid profile and on endogenous metabolite excretion, possibly reflecting their different polyphenol composition.
Morphology and structural integrity of fungal cells depend on cell wall polysaccharides. The chemical structure and biosynthesis of two types of these polysaccharides, chitin and (1-->3)-beta-glucan, have been studied extensively, whereas little is known about alpha-glucan. Here we describe the chemical structure of alpha-glucan isolated from wild-type and mutant cell walls of the fission yeast Schizosaccharomyces pombe. Wild-type alpha-glucan was found to consist of a single population of linear glucose polymers, approximately 260 residues in length. These glucose polymers were composed of two interconnected linear chains, each consisting of approximately 120 (1-->3)-linked alpha-d-glucose residues and some (1-->4)-linked alpha-D-glucose residues at the reducing end. By contrast, alpha-glucan of an alpha-glucan synthase mutant with an aberrant cell morphology and reduced alpha-glucan levels consisted of a single chain only. We propose that alpha-glucan biosynthesis involves an ordered series of events, whereby two alpha-glucan chains are coupled to create mature cell wall alpha-glucan. This mature form of cell wall alpha-glucan is essential for fission-yeast morphogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.