We contribute the largest publicly available dataset of naturally occurring factual claims for the purpose of automatic claim verification. It is collected from 26 fact checking websites in English, paired with textual sources and rich metadata, and labelled for veracity by human expert journalists. We present an in-depth analysis of the dataset, highlighting characteristics and challenges. Further, we present results for automatic veracity prediction, both with established baselines and with a novel method for joint ranking of evidence pages and predicting veracity that outperforms all baselines. Significant performance increases are achieved by encoding evidence, and by modelling metadata. Our best-performing model achieves a Macro F1 of 49.2%, showing that this is a challenging testbed for claim veracity prediction.
On the basis of a detailed case study of the High Forest Zone of Ghana, the paper challenges the common narrative of REDD as being fast and easy. The paper analyses proximate and underlying causes of deforestation and degradation and finds that these processes are driven by multiple underlying causes. The paper goes on to argue that the causes of deforestation and degradation that are found within the realm of the forestry sector, to which REDD measures will be largely confined, have emerged as a result of a political economy that gives priority to economic development over forest conservation, while at the same time allowing powerful interest groups, in particular the political and administrative elite, to financially benefit from resource depletion. The analysis suggests that forest conserving policy reforms are unlikely to come fast and easy, and that the prospect of future REDD payments may not accelerate them. It is argued that the case of Ghana is not unique and that REDD implementation may face similar constraints in many developing countries.
Patients with severe COVID-19 have overwhelmed healthcare systems worldwide. We hypothesized that machine learning (ML) models could be used to predict risks at different stages of management and thereby provide insights into drivers and prognostic markers of disease progression and death. From a cohort of approx. 2.6 million citizens in Denmark, SARS-CoV-2 PCR tests were performed on subjects suspected for COVID-19 disease; 3944 cases had at least one positive test and were subjected to further analysis. SARS-CoV-2 positive cases from the United Kingdom Biobank was used for external validation. The ML models predicted the risk of death (Receiver Operation Characteristics—Area Under the Curve, ROC-AUC) of 0.906 at diagnosis, 0.818, at hospital admission and 0.721 at Intensive Care Unit (ICU) admission. Similar metrics were achieved for predicted risks of hospital and ICU admission and use of mechanical ventilation. Common risk factors, included age, body mass index and hypertension, although the top risk features shifted towards markers of shock and organ dysfunction in ICU patients. The external validation indicated fair predictive performance for mortality prediction, but suboptimal performance for predicting ICU admission. ML may be used to identify drivers of progression to more severe disease and for prognostication patients in patients with COVID-19. We provide access to an online risk calculator based on these findings.
Fast similarity search is a key component in large-scale information retrieval, where semantic hashing has become a popular strategy for representing documents as binary hash codes. Recent advances in this area have been obtained through neural network based models: generative models trained by learning to reconstruct the original documents. We present a novel unsupervised generative semantic hashing approach, Ranking based Semantic Hashing (RBSH) that consists of both a variational and a ranking based component. Similarly to variational autoencoders, the variational component is trained to reconstruct the original document conditioned on its generated hash code, and as in prior work, it only considers documents individually. The ranking component solves this limitation by incorporating inter-document similarity into the hash code generation, modelling document ranking through a hinge loss. To circumvent the need for labelled data to compute the hinge loss, we use a weak labeller and thus keep the approach fully unsupervised.Extensive experimental evaluation on four publicly available datasets against traditional baselines and recent state-of-the-art methods for semantic hashing shows that RBSH significantly outperforms all other methods across all evaluated hash code lengths. In fact, RBSH hash codes are able to perform similarly to state-ofthe-art hash codes while using 2-4x fewer bits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.