The formation of amyloid fibrils is a common biochemical characteristic that occurs in Alzheimer's disease and several other amyloidoses. The unifying structural feature of amyloid fibrils is their specific type of -sheet conformation that differentiates these fibrils from the products of normal protein folding reactions. Here we describe the generation of an antibody domain, termed B10, that recognizes an amyloid-specific and conformationally defined epitope. This antibody domain was selected by phage-display from a recombinant library of camelid antibody domains. Surface plasmon resonance, immunoblots, and immunohistochemistry show that this antibody domain distinguishes A amyloid fibrils from disaggregated A peptide as well as from specific A oligomers. The antibody domain possesses functional activity in preventing the formation of mature amyloid fibrils by stabilizing A protofibrils. These data suggest possible applications of B10 in the detection of amyloid fibrils or in the modulation of their formation.neurodegeneration ͉ prion ͉ protein folding
Systemic amyloidosis is caused by the misfolding of a circulating amyloid precursor protein and the deposition of amyloid fibrils in multiple organs. Chemical and biophysical analysis of amyloid fibrils from human AL and murine AA amyloidosis reveal the same fibril morphologies in different tissues or organs of one patient or diseased animal. The observed structural similarities concerned the fibril morphology, the fibril protein primary and secondary structures, the presence of post-translational modifications and, in case of the AL fibrils, the partially folded characteristics of the polypeptide chain within the fibril. Our data imply for both analyzed forms of amyloidosis that the pathways of protein misfolding are systemically conserved; that is, they follow the same rules irrespective of where inside one body fibrils are formed or accumulated.
Systemic AL amyloidosis is a debilitating and potentially fatal disease that arises from the misfolding and fibrillation of immunoglobulin light chains (LCs). The disease is patient-specific with essentially each patient possessing a unique LC sequence. In this study, we present two ex vivo fibril structures of a λ3 LC. The fibrils were extracted from the explanted heart of a patient (FOR005) and consist of 115-residue fibril proteins, mainly from the LC variable domain. The fibril structures imply that a 180° rotation around the disulfide bond and a major unfolding step are necessary for fibrils to form. The two fibril structures show highly similar fibril protein folds, differing in only a 12-residue segment. Remarkably, the two structures do not represent separate fibril morphologies, as they can co-exist at different z-axial positions within the same fibril. Our data imply the presence of structural breaks at the interface of the two structural forms.
Systemic AA amyloidosis is a world-wide occurring protein misfolding disease of humans and animals. It arises from the formation of amyloid fibrils from serum amyloid A (SAA) protein. Using cryo electron microscopy we here show that amyloid fibrils which were purified from AA amyloidotic mice are structurally different from fibrils formed from recombinant SAA protein in vitro. Ex vivo amyloid fibrils consist of fibril proteins that contain more residues within their ordered parts and possess a higher β-sheet content than in vitro fibril proteins. They are also more resistant to proteolysis than their in vitro formed counterparts. These data suggest that pathogenic amyloid fibrils may originate from proteolytic selection, allowing specific fibril morphologies to proliferate and to cause damage to the surrounding tissue.
Learn about Alzheimer: The molecular conformation of a toxic β‐amyloid oligomer structure was determined by NMR spectroscopy (see picture). The measurements show a N‐terminal β strand that controls the partitioning between oligomer and protofibril formation. Targeting the N‐terminus of the peptide neutralizes Aβ‐dependent neuronal dysfunctions. The data have important implications for understanding the structural basis of Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.