A therosclerosis, a progressive, chronic, inflammatory disease with specific, localized manifestations in the arterial wall, is a major health burden and is predicted to become the leading cause of mortality and morbidity worldwide. 1,2 Complications of atherosclerosis, such as myocardial infarction (MI), which is the largest single cause of death in developed countries, are caused by inflammation-driven rupture of atherosclerotic plaques. 3A major hurdle in research on mechanisms of plaque rupture is the lack of appropriate mouse models which exhibit plaque rupture and lesion characteristics of vulnerable, unstable, and thus rupture-prone plaques as found in humans.4 Such characteristics most importantly include a thin and ruptured fibrous cap, plaque inflammation, neovascularization within the plaque (vasa vasorum), plaque hemorrhage, and intravascular (often occlusive) thrombus formation. 2,3,[5][6][7] In addition, an animal model of plaque instability/rupture should include responsiveness to pharmacological agents known to reduce the risk of plaque rupture in humans. 8,9 Currently discussed animal models of atherosclerosis typically represent a few but not the full combination of the characteristics seen in human unstable/ruptured plaques. [10][11][12][13][14] An animal model of New Methods in Cardiovascular Biology© 2013 American Heart Association, Inc. Rationale: The high morbidity/mortality of atherosclerosis is typically precipitated by plaque rupture and consequent thrombosis. However, research on underlying mechanisms and therapeutic approaches is limited by the lack of animal models that reproduce plaque instability observed in humans.Objective: Development and use of a mouse model of plaque rupture that reflects the end stage of human atherosclerosis. Methods and Results:On the basis of flow measurements and computational fluid dynamics, we applied a tandem stenosis to the carotid artery of apolipoprotein E-deficient mice on high-fat diet. At 7 weeks postoperatively, we observed intraplaque hemorrhage in ≈50% of mice, as well as disruption of fibrous caps, intraluminal thrombosis, neovascularization, and further characteristics typically seen in human unstable plaques. Administration of atorvastatin was associated with plaque stabilization and downregulation of monocyte chemoattractant protein-1 and ubiquitin. Microarray profiling of mRNA and microRNA (miR) and, in particular, its combined analysis demonstrated major differences in the hierarchical clustering of genes and miRs among nonatherosclerotic arteries, stable, and unstable plaques and allows the identification of distinct genes/miRs, potentially representing novel therapeutic targets for plaque stabilization. The feasibility of the described animal model as a discovery tool was established in a pilot approach, identifying a disintegrin and metalloprotease with thrombospondin motifs 4 (ADAMTS4) and miR-322 as potential pathogenic factors of plaque instability in mice and validated in human plaques. Conclusions:The newly described mouse mod...
Objective— Atherosclerosis is driven by inflammatory reactions that are shared with the innate immune system. Toll-like receptor-9 (TLR9) is an intracellular pattern recognition receptor of the innate immune system that is currently under clinical investigation as a therapeutic target in inflammatory diseases. Here, we investigated whether TLR9 has a role in the development of atherosclerosis in apolipoprotein E–deficient (ApoE −/− ) mice. Approach and Results— Newly generated double-knockout ApoE −/− :TLR9 −/− mice and control ApoE −/− mice were fed a high-fat diet from 8 weeks and effects on lesion size, cellular composition, inflammatory status, and plasma lipids were assessed after 8, 12, 15, and 20 weeks. All 4 time points demonstrated exacerbated atherosclerotic lesion severity in ApoE −/− :TLR9 −/− mice, with a corresponding increase in lipid deposition and accumulation of macrophages, dendritic cells, and CD4 + T cells. Although ApoE −/− :TLR9 −/− mice exhibited an increase in plasma very low-density lipoprotein/low-density-lipoprotein cholesterol, the very low-density lipoprotein/low-density lipoprotein:high-density lipoprotein ratio was unaltered because of a parallel increase in plasma high-density lipoprotein cholesterol. As a potential mechanism accounting for plaque progression in ApoE −/− :TLR9 −/− mice, CD4 + T-cell accumulation was further investigated and depletion of these cells in ApoE −/− :TLR9 −/− mice significantly reduced lesion severity. As a final translational approach, administration of a TLR9 agonist (type B CpG oligodeoxynucleotide 1668) to ApoE −/− mice resulted in a reduction of lesion severity. Conclusions— Genetic deletion of the innate immune receptor TLR9 exacerbated atherosclerosis in ApoE −/− mice fed a high-fat diet. CD4 + T cells were identified as potential mediators of this effect. A type B CpG oligodeoxynucleotide TLR9 agonist reduced lesion severity, thus identifying a novel therapeutic approach in atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.