Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver-gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changes occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials.
Using ambient-pressure X-ray photoelectron spectroscopy (AP-XPS), we studied the adsorption and reactions of CO and CO + H on the Ni(111) surface to identify the surface chemical state and the nature of the adsorbed species during the methanation reaction. In 200 mTorr CO, we found that NiO is formed from CO dissociation into CO and atomic oxygen. Additionally, carbonate (CO) is present on the surface from further reaction of CO with NiO. The addition of H into the reaction environment leads to reduction of NiO and the disappearance of CO. At temperatures >160 °C, CO adsorbed on hollow sites, and atomic carbon and OH species are present on the surface. We conclude that the methanation reaction proceeds via dissociation of CO, followed by reduction of CO to atomic carbon and its hydrogenation to methane.
The chemical structure of a Cu(111) model catalyst during the CO oxidation reaction in the CO+O2 pressure range of 10-300 mTorr at 298-413 K was studied in situ using surface sensitive X-ray photoelectron and adsorption spectroscopy techniques [X-ray photoelectron spectroscopy (XPS) and near edge X-ray adsorption fine structure spectroscopy (NEXAFS)]. For O2:CO partial pressure ratios below 1:3, the surface is covered by chemisorbed O and by a thin (∼1 nm) Cu2O layer, which covers completely the surface for ratios above 1:3 between 333 and 413 K. The Cu2O film increases in thickness and exceeds the escape depth (∼3-4 nm) of the XPS and NEXAFS photoelectrons used for analysis at 413 K. No CuO formation was detected under the reaction conditions used in this work. The main reaction intermediate was found to be CO2(δ-), with a coverage that correlates with the amount of Cu2O, suggesting that this phase is the most active for CO oxidation.
A systematic gas phase-dependence of the electron work function, electron affinity, band bending and the high frequency electrical conductivity of the prospective oxidation catalyst MoVTeNbO x with orthorhombic M1 structure was identified under selective alkane oxidation conditions. The conductivity measured in a fixed bed flow reactor at 1 bar with a noncontact microwave technique and the surface electronic properties studied by in situ X-ray photoelectron spectroscopy at 0.25 mbar were determined at 400 °C in 2:1 mixtures of oxygen and the alkanes ethane, propane, and n-butane, respectively. The observed modulation of the surface electron affinity is explained by a gas phase dependent modification of the dipolar structure of the active surface, while the band alignment is interpreted in terms of the formation and modification of the space charge region due to pinning of the Fermi energy to the surface state energy as defined by the V 4+ /V 5+ oxide surface layer. The thus changed charge carrier density in the space charge region gives rise to the observed conductivity response. Consequently, the catalytic system and its working mode can be described as a semiconductor heterostructure comprising the semiconducting bulk phase, a V 4+ /V 5+ oxide termination layer, and the reactive gas phase modulating the Fermi energy of the whole system.
The interaction of O2 with the Ag(111) surface was studied with scanning tunneling microscopy (STM) in the pressure range from 10 -9 Torr to 1 atm at room temperature and with X-ray photoelectron spectroscopy (XPS) up to 0.3 Torr O2 in the temperature range from RT to 413 K. STM images show that the Ag(111) surface topography is little affected in regions with large flat terraces, except for the appearance of mobile features due to oxygen atoms at pressures above 0.01 Torr. In regions where the step density is high the surface became rough under 0.01 Torr of O2, due to the local oxidation of Ag. Various chemical states of oxygen due to chemisorbed, oxide and subsurface species were identified by XPS as a function of pressure and temperature. The findings from the STM images and XPS measurements indicate that formation of an oxide phase, the thermodynamically stable form at room temperature under ambient O2 pressure, is kinetically hindered in the flat terrace areas but proceeds readily in regions with high step density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.