An increasing number of free software tools have been made available for the evaluation of fluorescence cell micrographs. The main users are biologists and related life scientists with no or little knowledge of image processing. In this review, we give an overview of available tools and guidelines about which tools the users should use to segment fluorescence micrographs. We selected 15 free tools and divided them into stand-alone, Matlab-based, ImageJ-based, free demo versions of commercial tools and data sharing tools. The review consists of two parts: First, we developed a criteria catalogue and rated the tools regarding structural requirements, functionality (flexibility, segmentation and image processing filters) and usability (documentation, data management, usability and visualization). Second, we performed an image processing case study with four representative fluorescence micrograph segmentation tasks with figure-ground and cell separation. The tools display a wide range of functionality and usability. In the image processing case study, we were able to perform figure-ground separation in all micrographs using mainly thresholding. Cell separation was not possible with most of the tools, because cell separation methods are provided only by a subset of the tools and are difficult to parametrize and to use. Most important is that the usability matches the functionality of a tool. To be usable, specialized tools with less functionality need to fulfill less usability criteria, whereas multipurpose tools need a well-structured menu and intuitive graphical user interface.
We present an algorithm for reconstructing a sample surface potential from its Kelvin probe force microscopy (KPFM) image. The measured KPFM image is a weighted average of the surface potential underneath the tip apex due to the long-range electrostatic forces. We model the KPFM measurement by a linear shift-invariant system where the impulse response is the point spread function (PSF). By calculating the PSF of the KPFM probe (tip+cantilever) and using the measured noise statistics, we deconvolve the measured KPFM image to obtain the surface potential of the sample.The reconstruction algorithm is applied to measurements of CdS-PbS nanorods measured in amplitude modulation KPFM (AM-KPFM) and to graphene layers measured in frequency modulation KPFM (FM-KPFM). We show that in the AM-KPFM measurements the averaging effect is substantial, whereas in the FM-KPFM measurements the averaging effect is negligible.
The pUL97 protein kinase encoded by human cytomegalovirus is a multifunctional determinant of the efficiency of viral replication and phosphorylates viral as well as cellular substrate proteins. Here, we report that pUL97 is expressed in two isoforms with molecular masses of approximately 90 and 100 kDa. ORF UL97 comprises an unusual coding strategy in that five in-frame ATG start codons are contained within the N-terminal 157 aa. Site-directed mutagenesis, transient expression of point and deletion mutants and proteomic analyses accumulated evidence that the formation of the large and small isoforms result from alternative initiation of translation, with the start points being at amino acids 1 and 74, respectively. In vitro kinase assays demonstrated that catalytic activity, in terms of autophosphorylation and histone substrate phosphorylation, was indistinguishable for the two isoforms. An analysis of the intracellular distribution of pUL97 by confocal laser-scanning microscopy demonstrated that both isoforms have a pronounced nuclear localization. Surprisingly, mapping experiments performed to identify the nuclear localization signal (NLS) of pUL97 strongly suggest that the mechanism of nuclear transport is distinct for the two isoforms. While the extreme N terminus (large isoform) comprises a highly efficient, bipartite NLS (amino acids 6-35), a second sequence apparently conferring a less efficient mode of nuclear translocation was identified downstream of amino acid 74 (small and large isoforms). Taken together, the findings argue for a complex mechanism of nuclear translocation for pUL97 which might be linked with fine-regulatory differences between the two isoforms.
The multifunctional protein kinase pUL97 of human cytomegalovirus (HCMV) strongly determines the efficiency of virus replication. Previously, the existence of two pUL97 isoforms that arise from alternative translational initiation and show a predominant nuclear localization was described. Two bipartite nuclear localization sequences, NLS1 and NLS2, were identified in the N terminus of the large isoform, whilst the small isoform exclusively contained NLS2. The current study found the following: (i) pUL97 nuclear localization in HCMV-infected primary fibroblasts showed accumulations in virus replication centres and other nuclear sections; (ii) in a quantitative evaluation system for NLS activity, the large isoform showed higher efficiency of nuclear translocation than the small isoform; (iii) NLS1 was mapped to aa 6-35 and NLS2 to aa 190-213; (iv) using surface plasmon resonance spectroscopy, the binding of both NLS1 and NLS2 to human importin-a was demonstrated, stressing the importance of individual arginine residues in the bipartite consensus motifs; (v) nuclear magnetic resonance spectroscopy of pUL97 peptides confirmed an earlier statement about the functional requirement of NLS1 embedding into an intact a-helical structure; and (vi) a bioinformatics investigation of the solvent-accessible surface suggested a high accessibility of NLS1 and an isoform-specific, variable accessibility of NLS2 for interaction with importin-a. Thus, the nucleocytoplasmic transport mechanism of the isoforms appeared to be differentially regulated, and this may have consequences for isoform-dependent functions of pUL97 during virus replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.