Stomata, the microvalves on leaf surfaces, exert major influences across scales, from plant growth and productivity to global carbon and water cycling. Stomatal opening enables leaf photosynthesis, and plant growth and water use, whereas plant survival of drought depends on stomatal closure. Here we report that stomatal function is constrained by a safety-efficiency trade-off, such that species with greater stomatal conductance under high water availability ( g max ) show greater sensitivity to closure during leaf dehydration, i.e., a higher leaf water potential at which stomatal conductance is reduced by 50% (Ψ gs50 ). The g max - Ψ gs50 trade-off and its mechanistic basis is supported by experiments on leaves of California woody species, and in analyses of previous studies of the responses of diverse flowering plant species around the world. Linking the two fundamental key roles of stomata—the enabling of gas exchange, and the first defense against drought—this trade-off constrains the rates of water use and the drought sensitivity of leaves, with potential impacts on ecosystems.
Clarifying the mechanisms of leaf and whole plant drought responses is critical to predict the impacts of ongoing climate change. The loss of rehydration capacity has been used for decades as a metric of leaf dehydration tolerance but has not been compared with other aspects of drought tolerance. We refined methods for quantifying the percent loss of rehydration capacity (PLRC), and for 18 Southern California woody species, we determined the relative water content and leaf water potential at PLRC of 10%, 25%, and 50%, and, additionally, the PLRC at important stages of dehydration including stomatal closure and turgor loss. On average, PLRC of 10% occurred below turgor loss point and at similar water status to 80% decline of stomatal conductance. As hypothesized, the sensitivity to loss of leaf rehydration capacity varied across species, leaf habits, and ecosystems and correlated with other drought tolerance traits, including the turgor loss point and structural traits including leaf mass per area. A new database of PLRC for 89 species from the global literature indicated greater leaf rehydration capacity in ecosystems with lower growing season moisture availability, indicating an adaptive role of leaf cell dehydration tolerance within the complex of drought tolerance traits.
The determination of optimum process parameters for moisture content reduction in water yam drying using a hot air dryer was the aim of this work. Gravimetric method was used to determine the moisture content. Design of experiment was used with slice thickness, airspeed and temperature as the independent factors. Thermal properties such as effective moisture diffusivity and activation energy were determined. The result showed that slice thickness, airspeed and temperature have significant influence on the moisture content reduction. The effective moisture diffusivity ranged from 2.84 x 10-5 m2/s to 8.10 x 10-5 m2/s. The activation energy was 30.592kJ/mol. Minimum moisture content value of 11.98% was obtained at slice thickness of 2mm, airspeed of 2 m/s and temperature of 70oC. The quadratic model best described the drying process. The hot air dryer can conveniently be used for moisture content reduction in water yam slices which will increase its shelf life.
Intra‐specific trait variation (ITV) plays a role in processes at a wide range of scales from organs to ecosystems across climate gradients. Yet, ITV remains rarely quantified for many ecophysiological traits typically assessed for species means, such as pressure volume (PV) curve parameters including osmotic potential at full turgor and modulus of elasticity, which are important in plant water relations. We defined a baseline “reference ITV” (ITVref) as the variation among fully exposed, mature sun leaves of replicate individuals of a given species grown in similar, well‐watered conditions, representing the conservative sampling design commonly used for species‐level ecophysiological traits. We hypothesized that PV parameters would show low ITVref relative to other leaf morphological traits, and that their intraspecific relationships would be similar to those previously established across species and proposed to arise from biophysical constraints. In a database of novel and published PV curves and additional leaf structural traits for 50 diverse species, we found low ITVref for PV parameters relative to other morphological traits, and strong intraspecific relationships among PV traits. Simulation modeling showed that conservative ITVref enables the use of species‐mean PV parameters for scaling up from spectroscopic measurements of leaf water content to enable sensing of leaf water potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.