Dynamical density functional theory (DDFT) has been successfully derived and applied to describe on the one hand passive colloidal suspensions, including hydrodynamic interactions between individual particles. On the other hand, active "dry" crowds of self-propelled particles have been characterized using DDFT. Here we go one essential step further and combine these two approaches. We establish a DDFT for active microswimmer suspensions. For this purpose, simple minimal model microswimmers are introduced. These microswimmers self-propel by setting the surrounding fluid into motion. They hydrodynamically interact with each other through their actively self-induced fluid flows and via the common "passive" hydrodynamic interactions. An effective soft steric repulsion is also taken into account. We derive the DDFT starting from common statistical approaches. Our DDFT is then tested and applied by characterizing a suspension of microswimmers the motion of which is restricted to a plane within a three-dimensional bulk fluid. Moreover, the swimmers are confined by a radially symmetric trapping potential. In certain parameter ranges, we find rotational symmetry breaking in combination with the formation of a "hydrodynamic pumping state", which has previously been observed in the literature as a result of particle-based simulations. An additional instability of this pumping state is revealed.
The majority of studies on self-propelled particles and microswimmers concentrates on objects that do not feature a deterministic bending of their trajectory. However, perfect axial symmetry is hardly found in reality, and shape-asymmetric active microswimmers tend to show a persistent curvature of their trajectories. Consequently, we here present a particle-scale statistical approach to circle-swimmer suspensions in terms of a dynamical density functional theory. It is based on a minimal microswimmer model and, particularly, includes hydrodynamic interactions between the swimmers. After deriving the theory, we numerically investigate a planar example situation of confining the swimmers in a circularly symmetric potential trap. There, we find that increasing curvature of the swimming trajectories can reverse the qualitative effect of active drive. More precisely, with increasing curvature, the swimmers less effectively push outwards against the confinement, but instead form high-density patches in the center of the trap. We conclude that the circular motion of the individual swimmers has a localizing effect, also in the presence of hydrodynamic interactions. Parts of our results could be confirmed experimentally, for instance, using suspensions of L-shaped circle swimmers of different aspect ratio.
The hydrodynamic flow field generated by self-propelled active particles and swimming microorganisms is strongly altered by the presence of nearby boundaries in a viscous flow. Using a simple model three-linked sphere swimmer, we show that the swimming trajectories near a no-slip wall reveal various scenarios of motion depending on the initial orientation and the distance separating the swimmer from the wall. We find that the swimmer can either be trapped by the wall, completely escape, or perform an oscillatory gliding motion at a constant mean height above the wall. Using a far-field approximation, we find that, at leading order, the wall-induced correction has a source-dipolar or quadrupolar flow structure where the translational and angular velocities of the swimmer decay as inverse third and fourth powers with distance from the wall, respectively. The resulting equations of motion for the trajectories and the relevant order parameters fully characterize the transition between the states and allow for an accurate description of the swimming behavior near a wall. We demonstrate that the transition between the trapping and oscillatory gliding states is first order discontinuous, whereas the transition between the trapping and escaping states is continuous, characterized by non-trivial scaling exponents of the order parameters. In order to model the circular motion of flagellated bacteria near solid interfaces, we further assume that the spheres can undergo rotational motion around the swimming axis. We show that the general three-dimensional motion can be mapped onto a quasi-two-dimensional representational model by an appropriate redefinition of the order parameters governing the transition between the swimming states.
Previous particle-based computer simulations have revealed a significantly more pronounced tendency of spontaneous global polar ordering in puller (contractile) microswimmer suspensions than in pusher (extensile) suspensions. We here evaluate a microscopic statistical theory to investigate the emergence of such order through a linear instability of the disordered state. For this purpose, input concerning the orientation-dependent pairdistribution function is needed, and we discuss corresponding approaches, particularly a heuristic variant of the Percus test-particle method applied to active systems. Our theory identifies an inherent evolution of polar order in planar systems of puller microswimmers, if mutual alignment due to hydrodynamic interactions overcomes the thermal dealignment by rotational diffusion. In the theory, the cause of orientational ordering can be traced back to the actively induced hydrodynamic rotation-translation coupling between the swimmers. Conversely, disordered pusher suspensions remain linearly stable against homogeneous polar orientational ordering. We expect that our results can be confirmed in experiments on (semi-)dilute active microswimmer suspensions, based, for instance, on biological pusher-and puller-type swimmers.
Microswimmers typically operate in complex environments. In biological systems, often diverse species are simultaneously present and interact with each other. Here, we derive a (time-dependent) particle-scale statistical description, namely a dynamical density functional theory, for such multi-species systems, extending existing works on one-component microswimmer suspensions. In particular, our theory incorporates the effect of external potentials, but also steric and hydrodynamic interactions between swimmers. For the latter, a previously introduced force-dipole-based minimal (pusher or puller) microswimmer model is used. As a limiting case of our theory, mixtures of hydrodynamically interacting active and passive particles are captured as well. After deriving the theory, we apply it to different planar swimmer configurations. First, these are binary pusher-puller mixtures in external traps. In the considered situations, we find that the majority species imposes its behavior on the minority species. Second, for unconfined binary pusher-puller mixtures, the linear stability of an orientationally disordered state against the emergence of global polar orientational order (and thus emergent collective motion) is tested analytically. Our statistical approach predicts, qualitatively in line with previous particle-based computer simulations, a threshold for the fraction of pullers and for their propulsion strength that lets overall collective motion arise. Third, we let driven passive colloidal particles form the boundaries of a shear cell, with confined active microswimmers on their inside. Driving the passive particles then effectively imposes shear flows, which persistently acts on the inside microswimmers. Their resulting behavior reminds of the one of circle swimmers, though with varying swimming radii. arXiv:1904.07277v2 [cond-mat.soft]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.